Synergistic control of acute respiratory pathogens by bacteriophage and the innate immune response
噬菌体和先天免疫反应对急性呼吸道病原体的协同控制
基本信息
- 批准号:10461723
- 负责人:
- 金额:$ 48.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-22 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute PneumoniaAcute respiratory infectionAddressAnimalsAntibioticsBacteriaBacterial InfectionsBacteriophagesBiological ModelsCellsClinicalClinical TrialsComputer SimulationCritical IllnessCytolysisDataDevelopmentDistributional ActivityDoseEcologyEffectivenessEffector CellEnvironmentExposure toFailureFutureGram-Negative BacteriaHospitalsHybridsImmuneImmune responseImmune signalingImmune systemImmunocompetentImmunologyIn VitroIndividualInfectionInnate Immune ResponseInnate Immune SystemInterdisciplinary StudyJointsLymphoidLyticMeasurementMeasuresMetabolic Clearance RateMethodsMicrobeModelingMulti-Drug ResistanceMusNon-linear ModelsNonlinear DynamicsOutcomePathogenicityPatientsPneumoniaPopulationProliferatingPseudomonas aeruginosaPublic HealthResearchResearch PersonnelResistanceResolutionRespiratory DiseaseRespiratory Tract InfectionsRiskScheduleSystemTarget PopulationsTechniquesTestingTherapeuticTimeTranslatingTreatment EfficacyTreatment FailureUnited StatesViralVirusWorkacute infectionbacterial resistancebaseclinical translationcommensal bacteriacontrol theorycurative treatmentsdata integrationdensitydesigndosagedrug resistant pathogendynamic systemexperimental analysisexperimental studyimmunological statusimmunoregulationimprovedin vivoinnovationinsightlife historymathematical modelmouse modelmulti-drug resistant pathogenmulti-scale modelingmultidisciplinarymultidrug-resistant Pseudomonas aeruginosamutantneutrophilnovelnovel therapeutic interventionoptimal control theorypathogenpathogenic bacteriapneumonia modelpredictive modelingpreventpublic health relevancerational designrespiratoryrespiratory pathogenresponsescale upsimulationspatiotemporalsynergismtraittreatment strategy
项目摘要
Abstract
Multi-drug resistant (MDR) bacterial pathogens constitute a critical public health threat. The spread of
MDR pathogens in hospitals and in the environment has spurred a multidisciplinary response to develop
novel antibiotic alternatives. Bacteriophage (`phage') therapy represents a treatment strategy that can, in
principle, specifically eliminate MDR pathogens from animal hosts while minimizing off-target effects on
host cells and commensal bacteria. The successful compassionate use of phage therapy for critically ill
patients in the United States demonstrates a critical first-step towards large-scale translational deployment
of phage therapy. However, prior clinical trials of phage therapeutic efficacy have yielded equivocal
results, thereby raising the question: what are the core mechanisms underlying curative treatment of
respiratory infections by phage therapy? The use of phage-based therapy presumes that the direct killing
action of phage is responsible for pathogen elimination in vivo. In contrast, prior work of the investigators
showed that the outcome of in vivo phage therapeutic treatment of acute pneumonia in a murine host
depended critically on host immune state. The investigators combined population modeling and
experimental analysis to identify a mechanism of `immunophage synergy' to identify criteria when phage
therapy works and when it fails. Here, the project will combine population modeling, control theory, data-
driven computational simulations, in vitro experiments with phage, bacteria, and neutrophils, and in vivo
infection experiments in murine hosts to understand fundamental principles underlying curative treatment
of acute respiratory infections. This project will characterize the spatiotemporal drivers of synergistic
elimination in vivo as well as develop optimized combinations of phage strains, dosages, and timing to
avert therapeutic failure via the proliferation of phage-resistant bacterial mutants across a continuum of
immunodeficient hosts. The integrated and multidisciplinary research plans are designed to yield
fundamental insights into the mechanism of synergistic elimination of bacterial pathogens by phage and
innate effector cells as well as generalizable and rigorous approaches to optimized phage cocktail design
when immune responses are compromised.
抽象的
多重耐药(MDR)细菌病原体构成了严重的公共卫生威胁。的传播
医院和环境中的耐多药病原体激发了多学科的反应,以开发
新型抗生素替代品。噬菌体(“噬菌体”)疗法代表了一种治疗策略,可以
原则上,专门消除动物宿主中的 MDR 病原体,同时最大限度地减少对动物宿主的脱靶影响
宿主细胞和共生细菌。噬菌体疗法成功用于危重病人的富有同情心的治疗
美国患者向大规模转化部署迈出了关键的第一步
噬菌体疗法。然而,先前噬菌体治疗功效的临床试验得出了模棱两可的结果
结果,从而提出了一个问题:治愈性治疗的核心机制是什么?
噬菌体疗法治疗呼吸道感染?使用基于噬菌体的疗法假定直接杀死
噬菌体的作用负责体内病原体的消除。相比之下,研究人员之前的工作
显示体内噬菌体治疗小鼠宿主急性肺炎的结果
很大程度上取决于宿主的免疫状态。研究人员结合人口模型和
实验分析以确定“免疫噬菌体协同作用”的机制,以确定噬菌体时的标准
治疗有效以及失败时。在这里,该项目将结合人口建模、控制理论、数据-
驱动计算模拟、噬菌体、细菌和中性粒细胞的体外实验以及体内实验
在小鼠宿主中进行感染实验,以了解治疗的基本原理
急性呼吸道感染。该项目将描述协同的时空驱动因素
体内消除以及开发噬菌体菌株、剂量和时间的优化组合
通过噬菌体抗性细菌突变体在连续体中的增殖来避免治疗失败
免疫缺陷的宿主。综合和多学科研究计划旨在产生
对噬菌体和细菌病原体协同消除机制的基本见解
先天效应细胞以及优化噬菌体鸡尾酒设计的通用且严格的方法
当免疫反应受到损害时。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laurent DEBARBIEUX其他文献
Laurent DEBARBIEUX的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laurent DEBARBIEUX', 18)}}的其他基金
Synergistic control of acute respiratory pathogens by bacteriophage and the innate immune response
噬菌体和先天免疫反应对急性呼吸道病原体的协同控制
- 批准号:
9797736 - 财政年份:2019
- 资助金额:
$ 48.81万 - 项目类别:
Synergistic control of acute respiratory pathogens by bacteriophage and the innate immune response
噬菌体和先天免疫反应对急性呼吸道病原体的协同控制
- 批准号:
10000827 - 财政年份:2019
- 资助金额:
$ 48.81万 - 项目类别:
Synergistic control of acute respiratory pathogens by bacteriophage and the innate immune response
噬菌体和先天免疫反应对急性呼吸道病原体的协同控制
- 批准号:
10213594 - 财政年份:2019
- 资助金额:
$ 48.81万 - 项目类别:
Synergistic control of acute respiratory pathogens by bacteriophage and the innate immune response
噬菌体和先天免疫反应对急性呼吸道病原体的协同控制
- 批准号:
10663212 - 财政年份:2019
- 资助金额:
$ 48.81万 - 项目类别:
相似国自然基金
影像组学用于急性病毒性肺炎鉴别诊断的生物学机制探究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于芳香药性的中药挥发油单体成分优化配伍治疗病毒性肺炎急性渗出期病理阶段的功效及作用机制研究
- 批准号:82141217
- 批准年份:2021
- 资助金额:67 万元
- 项目类别:专项基金项目
中西医综合治疗气分阶段非典型性肺炎的机理探讨
- 批准号:30340017
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:专项基金项目
相似海外基金
Elucidating the immunology of autoantibody formation and function in COVID-19
阐明 COVID-19 中自身抗体形成和功能的免疫学
- 批准号:
10639707 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Molecular regulation of immunoproteasome assembly in inflammatory diseases
炎症性疾病中免疫蛋白酶体组装的分子调控
- 批准号:
10637422 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Early detection and identification of ventilator associated pneumonia
呼吸机相关性肺炎的早期发现和识别
- 批准号:
10663534 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
A Point-of-Care Test for Rapid Diagnosis of Valley Fever
快速诊断谷热的即时测试
- 批准号:
10759985 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别: