Digital Mental Health Service for Non-Treatment Seeking Young Adults
为不寻求治疗的年轻人提供数字心理健康服务
基本信息
- 批准号:10461855
- 负责人:
- 金额:$ 28.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-04 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherenceAdultAffectAmericasAnxietyAnxiety DisordersAttitudeBehavioralCharacteristicsChronicComplexCoping SkillsDevelopmentDropoutEarly treatmentEffectivenessFeeling suicidalFutureGoalsHealth Services AccessibilityHumanIndividualInterventionInvestigational TherapiesLearningLengthLifeLinkMachine LearningMajor Depressive DisorderMeasuresMediatingMental DepressionMental HealthMental Health ServicesMethodsModelingMotivationOnline SystemsOutcomeParticipantPatient RecruitmentsPersonsPharmaceutical PreparationsPharmacotherapyProcessPsychiatric therapeutic procedurePsychotherapyRandomizedRandomized Controlled TrialsResearchRiskSelf ManagementServicesSeveritiesSymptomsTechnologyTelephoneText MessagingTimeUnited StatesVoiceWaiting ListsWorkadaptive interventionadvocacy organizationsage groupagedanxiety symptomsbasecommunity settingdepressive symptomsdesigndiagnostic criteriadigitaldigital mental healtheffectiveness evaluationexperiencefeasibility trialhealth literacyhuman modelimprovedinterestiterative designonline communitypreferencepreventive interventionpsychoeducationalpsychologicpsychological distresspsychological outcomespsychological symptomreduce symptomsscreeningsecondary outcomeself relianceskillssocial stigmasymptom self managementtext messaging interventiontherapy designtreatment durationtreatment trialweb siteyoung adult
项目摘要
PROJECT SUMMARY
Young adults aged 18-24 experience higher levels of mental health problems than any other adult age
group. Over one quarter of all young adults living in the United States suffer from a mental health condition.
Unfortunately, they are the adult age group who are least likely to seek or receive traditional face-to-face
treatments such as in-person psychotherapy or pharmacotherapy. There is evidence that they are, however,
interested in using digital mental health interventions (DMHIs), such as mobile and web-based apps, to support
symptom self-management and skill building. While evidence suggests mental health apps can effectively
reduce symptom severity, they require motivation from the user to open and use the app, which contributes to
the high dropout rates. The primary method of addressing dropout has been the use of human coaching, which
boosts engagement.
SMS text messages arrive through the most commonly used app on the phone, and are therefore likely to
be viewed. Initial work in text message interventions suggests good adherence, as effort is low, but
effectiveness has been inconsistent. Messages can be perceived as off-target or impersonal, and it is difficult
to convey more complex information. This project aims to address these problems by developing and piloting a
personalized text messaging platform that uses machine learning to tailor SMS messages to an individual’s
needs and preferences, and URL links to provide access to psychoeducational content to contextualize
messages, when the length of that content exceeds the limitations of messages. This project will include a
partnership with Mental Health America, the nation’s largest mental health advocacy organization.
The primary goals of the project are to: (1) Develop an adaptive messaging service for young adults that
personalizes messages and psychoeducational content to the needs and preferences of an individual, (2)
Conduct a feasibility trial using a sequential multiple assignment randomized treatment (SMART) design, which
will evalutate (a) the effectiveness of an adaptive, personalized messaging intervention in reducing
engagement relative to a static version; and (b) whether human coaching results in greater symptom reduction
and engagement, relative an unguided implementation.
This project will, in the near term, allow us to determine the feasibility of this intervention, including whether
our adaptive intervention affects treatment psychological and engagement targets, and reduces psychological
distress. It will also provide preliminary information on the feasibility of a scalable model of targeted, low-
intensity coaching for users who may require additional support above and beyond a fully automated
intervention. This will prepare us for our longer-term goal of conducting a fully-powered randomized controlled
trial of our adaptive intervention in an online community setting.
项目概要
18-24 岁的年轻人比其他任何年龄段的成年人更容易出现心理健康问题
超过四分之一的美国年轻人患有心理健康问题。
不幸的是,他们是最不可能寻求或接受传统面对面交流的成年人。
然而,有证据表明,诸如面对面心理治疗或药物治疗之类的治疗方法是有效的。
有兴趣使用数字心理健康干预措施 (DMHI)(例如移动和基于网络的应用程序)来支持
虽然有证据表明心理健康应用程序可以有效地进行症状自我管理和技能培养。
减轻症状严重程度,它们需要用户打开和使用应用程序的动力,这有助于
解决高辍学率的主要方法是使用人工辅导。
提高参与度。
SMS 文本消息通过手机上最常用的应用程序发送,因此很可能
短信干预的初步工作显示出良好的依从性,因为努力程度较低,但
信息的有效性可能会被认为是偏离目标或没有人情味的,这很困难。
该项目旨在通过开发和试点来解决这些问题。
个性化短信平台,使用机器学习根据个人的需要定制短信
需求和偏好以及 URL 链接,以提供对心理教育内容的访问以进行情境化
消息,当该内容的长度超过消息的限制时,该项目将包含一个。
与美国最大的心理健康倡导组织 Mental Health America 合作。
该项目的主要目标是: (1) 为年轻人开发自适应消息服务
根据个人的需求和偏好个性化信息和心理教育内容,(2)
使用序贯多重分配随机治疗 (SMART) 设计进行可行性试验,其中
将评估 (a) 适应性、个性化消息传递干预在减少
相对于静态版本的参与度;以及(b)人工指导是否可以更大程度地减少症状
和参与,相对于无指导的实施。
该项目将在短期内让我们确定这种干预的可行性,包括是否
我们的适应性干预会影响治疗心理和参与目标,并减少心理治疗
它还将提供有关有针对性的、低风险的可扩展模型的可行性的初步信息。
为可能需要全自动之外的额外支持的用户提供强度指导
这将为我们进行全面随机对照的长期目标做好准备。
我们在在线社区环境中进行适应性干预的试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID CURTIS MOHR其他文献
DAVID CURTIS MOHR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID CURTIS MOHR', 18)}}的其他基金
Digital Mental Health Intervention for Nonsuicidal Self-Injury in Young Adults
针对年轻人非自杀性自残的数字心理健康干预
- 批准号:
10353714 - 财政年份:2022
- 资助金额:
$ 28.29万 - 项目类别:
Digital Mental Health Intervention for Nonsuicidal Self-Injury in Young Adults
针对年轻人非自杀性自残的数字心理健康干预
- 批准号:
10591569 - 财政年份:2022
- 资助金额:
$ 28.29万 - 项目类别:
Digital Mental Health Service for Non-Treatment Seeking Young Adults
为不寻求治疗的年轻人提供数字心理健康服务
- 批准号:
10693183 - 财政年份:2021
- 资助金额:
$ 28.29万 - 项目类别:
Digital Mental Health Service for Non-Treatment Seeking Young Adults
为不寻求治疗的年轻人提供数字心理健康服务
- 批准号:
10285466 - 财政年份:2021
- 资助金额:
$ 28.29万 - 项目类别:
Technology Enabled Services for Coordinated Care of Depression in Healthcare Settings
医疗机构中抑郁症协调护理的技术支持服务
- 批准号:
10615842 - 财政年份:2020
- 资助金额:
$ 28.29万 - 项目类别:
Technology Enabled Services for Coordinated Care of Depression in Healthcare Settings
医疗机构中抑郁症协调护理的技术支持服务
- 批准号:
10462746 - 财政年份:2020
- 资助金额:
$ 28.29万 - 项目类别:
相似国自然基金
基于前景理论的ADHD用药决策过程与用药依从性内在机制研究
- 批准号:72304279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
基于HAPA理论的PCI术后患者运动依从性驱动机制与干预方案构建研究
- 批准号:72304180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于健康行为程式模型提升高血压患者药物依从性的干预策略构建研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 28.29万 - 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 28.29万 - 项目类别:
Promoting Viral Suppression through the CHAMPS+ Intervention in the Deep South
通过 CHAMPS 干预南部腹地促进病毒抑制
- 批准号:
10819823 - 财政年份:2023
- 资助金额:
$ 28.29万 - 项目类别:
Determinants of polymicrobial diabetic wound infections
多种微生物糖尿病伤口感染的决定因素
- 批准号:
10665269 - 财政年份:2023
- 资助金额:
$ 28.29万 - 项目类别: