Gut-brain axis in metabolic disease
代谢疾病中的肠脑轴
基本信息
- 批准号:10454934
- 负责人:
- 金额:$ 186.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAmygdaloid structureBariatricsBehavioralBody WeightBody Weight decreasedBrainBrain StemCalcitoninCaloriesCellsCholecystokininDevelopmentEatingElectrophysiology (science)EndocrineEnergy MetabolismFoodFood Intake RegulationForeign BodiesGastric EmptyingGastrointestinal tract structureGlucoseGoalsHypothalamic structureImpairmentIndividualInfectious AgentIngestionLabelMeasuresMediatingMetabolicMetabolic DiseasesMethodsMolecularMonitorMotivationNatureNauseaNeuronsNucleus solitariusNutrientObesityOperative Surgical ProceduresPeripheralPharmacologyPhysiologicalPlayPopulationProceduresProgram Research Project GrantsRoleSatiationSensorySignal TransductionStimulusStructure of area postremaSymptomsSystemTarget PopulationsTechniquesTestingTherapeuticToxinUrsidae FamilyWorkbariatric surgerycell motilitycell typeexperiencegastrointestinal functiongut-brain axishedonichormonal signalsleptin receptormouse modelneural circuitneuronal circuitryneurotransmissionnext generation sequencingnovel therapeutic interventionobesity treatmentparabrachial nucleusprogramsrelating to nervous systemresponsetargeted treatment
项目摘要
Project Summary/Abstract
A wide range of evidence points to the critical role that signals from the gut, acting in the CNS, play in
the regulation of food intake, body weight and the disposition of metabolic fuels including glucose. Some of the
most powerful evidence for the critical nature of this “gut-brain” axis comes from direct manipulations of the GI
tract that occur during various bariatric surgical procedures. These procedures are often thought of as
“restrictive” or “malabsorptive”, however, it is clear that the potent effects of these procedures to reduce body
weight and glucose levels are the product of altering the activity of the gut-brain axis. The important point is
that manipulation of the gut via these surgical interventions provides the largest and most sustained weight
loss in individuals with obesity compared to any other therapeutic option. Thus a better understanding of the
gut-brain axis is crucial for the development of new, less invasive and more scalable solutions to treat obesity.
While the importance of the gut-brain axis is clear, our understanding of how this axis works remains
incomplete. This program project grant will bring together a range of experiences and technical approaches
under a single coordinated project that will allow for rapid understanding of the impact of gut, neural and
hormonal signals on their crucial targets within brainstem neural circuitry. To that end, the current projects will
utilize advanced neuroanatomical tracing, electrophysiology, activation and silencing of circuits, next
generation sequencing and apply all of these methods exclusively in molecularly defined cell-types using a
broad range of mouse models we have developed. These approaches will be combined with a range of
behavioral and physiological measures of food intake, energy expenditure and GI function. Finally, we will
bring to bear advanced surgical approaches that allow for assessment of the impact of bariatric surgery in
these mouse models.
The ultimate goal of this project is to identify key aspects of how the GI tract impacts these neuronal
circuits, the identification of key neuronal populations that are the target of those GI signals and how each
population can influence food intake, body weight and regulate GI function. The guiding hypothesis is that the
signals generated and the neural circuit engaged by toxins and those by normal presentation of nutrients to the
GI tract will be distinct in several key regions of the brainstem. The detailed understanding of these parallel
circuits will allow for a better understanding of existing therapies that target the brainstem and the development
of entirely new therapeutic strategies that appropriately engage this circuitry in a manner that is similar to what
happens after bariatric surgery.
项目概要/摘要
大量证据表明,来自肠道的信号在中枢神经系统中发挥着关键作用,
食物摄入量、体重和代谢燃料(包括葡萄糖)的处置的调节。
这个“肠脑”轴的关键性质的最有力证据来自对胃肠道的直接操纵
这些手术通常被认为是在各种减肥手术过程中发生的。
“限制性”或“吸收不良”,然而,很明显,这些程序对减少身体的有效影响
体重和血糖水平是改变肠脑轴活动的产物,重要的是。
通过这些外科手术干预肠道可以提供最大且最持久的体重
与任何其他治疗方案相比,肥胖症患者的损失有所增加,从而更好地了解肥胖症患者的情况。
肠脑轴对于开发新的、侵入性较小且更具可扩展性的肥胖治疗解决方案至关重要。
虽然肠脑轴的重要性是显而易见的,但我们对该轴如何工作的理解仍然存在
该计划项目赠款将汇集一系列经验和技术方法。
在一个协调的项目下,该项目将允许快速了解肠道、神经和
为此,当前的项目将在脑干神经回路的关键目标上释放激素信号。
利用先进的神经解剖学追踪、电生理学、电路激活和沉默,下一步
世代测序并将所有这些方法专门应用于分子定义的细胞类型,使用
我们开发了广泛的小鼠模型,这些方法将与一系列的方法相结合。
最后,我们将测量食物摄入量、能量消耗和胃肠功能。
采用先进的手术方法,可以评估减肥手术的影响
这些鼠标模型。
该项目的最终目标是确定胃肠道如何影响这些神经元的关键方面
电路,识别作为这些 GI 信号目标的关键神经群体,以及每个神经群体如何
人口可以影响食物摄入量、体重并调节胃肠道功能。
毒素产生的信号和神经回路以及正常向身体提供营养物质的神经回路
胃肠道将在脑干的几个关键区域中进行详细的了解。
电路将有助于更好地理解针对脑干和发育的现有疗法
全新的治疗策略,以类似于的方式适当地参与该电路
发生在减肥手术后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANDY J SEELEY其他文献
RANDY J SEELEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANDY J SEELEY', 18)}}的其他基金
Intestinal Reg3g as a mediator of dietary, pharmacological and surgical therapies for obesity and diabetes
肠道 Reg3g 作为肥胖和糖尿病饮食、药物和手术治疗的中介
- 批准号:
10654019 - 财政年份:2022
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
10667317 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
10263948 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
10454936 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Role of GDF15 and its receptor in the CNS regulation of food intake and body weight
GDF15及其受体在中枢神经系统食物摄入和体重调节中的作用
- 批准号:
10311051 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
10018878 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
Gut-brain axis in metabolic disease - Administrative Core
代谢疾病中的肠脑轴 - 管理核心
- 批准号:
9792644 - 财政年份:2019
- 资助金额:
$ 186.09万 - 项目类别:
相似国自然基金
慢性应激差异化调控杏仁核神经元突触结构的机制研究
- 批准号:81960257
- 批准年份:2019
- 资助金额:33.7 万元
- 项目类别:地区科学基金项目
FMR1NB基因多态性和男性同性恋杏仁核结构和功能的相关性研究
- 批准号:81671357
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
不同亚型功能性消化不良杏仁核环路的脑功能及结构磁共振成像研究
- 批准号:81671672
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
视网膜直接投射到杏仁核的神经通路结构和功能研究
- 批准号:31571091
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Changes in neural response to eating after bariatric surgery: MRI results
减肥手术后饮食神经反应的变化:MRI 结果
- 批准号:
8607936 - 财政年份:2010
- 资助金额:
$ 186.09万 - 项目类别:
Changes in neural response to eating after bariatric surgery: MRI results
减肥手术后饮食神经反应的变化:MRI 结果
- 批准号:
8050147 - 财政年份:2010
- 资助金额:
$ 186.09万 - 项目类别: