Role of endothelial JAK/STAT signaling in the regulation of vascular leakage
内皮 JAK/STAT 信号在血管渗漏调节中的作用
基本信息
- 批准号:10451718
- 负责人:
- 金额:$ 36.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:ADAMTSActinsAcuteAddressAffectAnti-Inflammatory AgentsBlood VesselsBreedingCandidate Disease GeneCell CommunicationCessation of lifeClinicalComplexConflict (Psychology)Cytokine SignalingCytoskeletonDataEndothelial CellsEndotheliumEnzymesExtravasationFeedbackFunctional disorderFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGlycocalyxGrantHyaluronanHyaluronic AcidHyaluronidaseIL6 geneImmune responseIn VitroInflammationInflammatoryInflammatory ResponseInterleukin-6Janus kinaseKnock-inKnock-outKnockout MiceKnowledgeLeadLinkLiteratureLungMediatingMediator of activation proteinMetalloproteasesModelingMonomeric GTP-Binding ProteinsMusMutationOrganOutcomePathway interactionsPermeabilityPharmacologyPhosphoric Monoester HydrolasesPhosphorylationPost-Translational Protein ProcessingRegulationResearch Project GrantsRoleSTAT3 geneSepsisSeptic ShockSignal PathwaySignal TransductionStress FibersTestingTherapeuticTissuesTranscriptional RegulationVascular Permeabilitiesarmbasececal ligation puncturecytokinedesignhealingimprovedin vivolong-term sequelaeloss of functionmortalitynew therapeutic targetnovelnovel therapeutic interventionpathogenpreventresponseseptictissue injurytissue repairtranscription factortranslational potential
项目摘要
Sustained vascular leakage due to prolonged or exacerbated inflammation leads to organ damage, lasting
sequelae and increased mortality. The mechanisms that mediate long-term loss of endothelial barrier function
are poorly understood. We propose that transcriptional changes in the endothelium, and in particular STAT3-
dependent gene regulation, may explain these long-term changes. STAT3 can promote opposing effects on
the endothelium. While inhibition of its phosphorylation (mediated by JAK kinases) is anti-inflammatory and
reduces endothelial permeability, endothelial STAT3 knockout actually increases vascular leakage. The
central hypothesis of this grant is that prolonged STAT3 phosphorylation promotes a pro-inflammatory
STAT3 transcriptional response that involves changes in the glycocalyx, including degradation of
hyaluronic acid, and drastic alterations in the actin cytoskeleton. This hypothesis challenges the current
understanding of the role of STAT3 in the endothelial inflammatory response by linking cytokine signaling to
sustained vascular leakage via a novel mechanism. A better understanding of this pathway not only can
explain multiple clinical observations, but also is expected to have a significant positive impact on future anti-
inflammatory treatments by identifying novel pharmacological targets to prevent and/or revert the systemic
vascular leakage without affecting other arms of the immune response that may be required for pathogen
clearing or tissue healing. We will combine in vitro and in vivo experimentation in the three separate aims to:
Identify the specific role of STAT3-dependent transcriptional mediators in endothelial barrier loss. We identified
novel STAT3-dependent genes downstream of IL-6, including endothelial glycocalyx catabolic enzymes and
modulators of the actin cytoskeleton. Loss of hyaluronan and actin stress fibers temporally correlate with IL-6-
induced loss of barrier function in HUVEC. We will determine any causal roles for these candidate genes.
Determine the requirement of endothelial STAT3 phosphorylation in promoting barrier function loss in vivo.
Phosphorylated and non-phosphorylated STAT3 may have different and even opposing roles. We will use
established models of sepsis to assess mice survival, vascular leakage and endothelial glycocalyx and
cytoskeletal regulation of STAT3 (STAT3iEKO) and gp130iEKO knockout mice, as well as mice harboring an
inducible, endothelial-specific knockin Y705F mutation (STAT3iE-Y705F).
Determine the role of feedback loops leading to STAT3 sustained activation in barrier function. We will
determine how an IL-6-induced sustained activation of STAT3 can lead to prolonged vascular leakage by
interfering with negative feedback loops involving SOCS3 and TC45. We will identify potential post-
translational modifications of the negative regulator SOCS3 that could lead to sustained STAT3 activation. To
assess the role of these loops in vivo, we will create endothelial-specific SOCS3 knockouts by breeding
SOCS3fl mice to cdh5-CreERT2 mice.
由于长期或加剧的炎症而导致的持续血管渗漏会导致器官损伤,
后遗症和死亡率增加。介导内皮屏障功能长期丧失的机制
人们了解甚少。我们认为内皮细胞的转录变化,特别是 STAT3-
依赖基因调控,可以解释这些长期变化。 STAT3可以促进相反的作用
内皮细胞。虽然抑制其磷酸化(由 JAK 激酶介导)具有抗炎作用
降低内皮通透性,内皮 STAT3 敲除实际上会增加血管渗漏。这
该资助的中心假设是 STAT3 磷酸化延长会促进促炎
STAT3 转录反应涉及糖萼的变化,包括
透明质酸和肌动蛋白细胞骨架的剧烈改变。这一假设挑战了当前的
通过将细胞因子信号传导与 STAT3 联系起来,了解 STAT3 在内皮炎症反应中的作用
通过一种新的机制持续血管渗漏。更好地理解这条途径不仅可以
解释了多项临床观察结果,而且预计会对未来的抗-
通过识别新的药理学靶点来预防和/或恢复全身性炎症治疗
血管渗漏而不影响病原体可能所需的其他免疫反应
清除或组织愈合。我们将结合体外和体内实验来实现三个不同的目标:
确定 STAT3 依赖性转录介质在内皮屏障丧失中的具体作用。我们确定了
IL-6 下游的新型 STAT3 依赖性基因,包括内皮糖萼分解代谢酶和
肌动蛋白细胞骨架的调节剂。透明质酸和肌动蛋白应激纤维的损失与 IL-6- 暂时相关
导致 HUVEC 屏障功能丧失。我们将确定这些候选基因的因果作用。
确定内皮 STAT3 磷酸化在促进体内屏障功能丧失中的要求。
磷酸化和非磷酸化的 STAT3 可能具有不同甚至相反的作用。我们将使用
建立脓毒症模型来评估小鼠存活率、血管渗漏和内皮糖萼
STAT3 (STAT3iEKO) 和 gp130iEKO 敲除小鼠以及携带
可诱导的内皮特异性敲入 Y705F 突变 (STAT3iE-Y705F)。
确定反馈环路在屏障功能中导致 STAT3 持续激活的作用。我们将
确定 IL-6 诱导的 STAT3 持续激活如何导致血管渗漏延长
干扰涉及 SOCS3 和 TC45 的负反馈回路。我们将确定潜在的后
负调节因子 SOCS3 的翻译修饰可能导致 STAT3 持续激活。到
评估这些环在体内的作用,我们将通过育种创建内皮特异性 SOCS3 敲除
SOCS3fl 小鼠至 cdh5-CreERT2 小鼠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandro Pablo Adam其他文献
Alejandro Pablo Adam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alejandro Pablo Adam', 18)}}的其他基金
Role of endothelial JAK/STAT signaling in the regulation of vascular leakage
内皮 JAK/STAT 信号在血管渗漏调节中的作用
- 批准号:
9659749 - 财政年份:2018
- 资助金额:
$ 36.45万 - 项目类别:
Role of endothelial JAK/STAT signaling in the regulation of vascular leakage
内皮 JAK/STAT 信号在血管渗漏调节中的作用
- 批准号:
9788493 - 财政年份:2018
- 资助金额:
$ 36.45万 - 项目类别:
Role of endothelial JAK/STAT signaling in the regulation of vascular leakage
内皮 JAK/STAT 信号在血管渗漏调节中的作用
- 批准号:
10227031 - 财政年份:2018
- 资助金额:
$ 36.45万 - 项目类别:
Role of endothelial JAK/STAT signaling in the regulation of vascular leakage
内皮 JAK/STAT 信号在血管渗漏调节中的作用
- 批准号:
10624516 - 财政年份:2018
- 资助金额:
$ 36.45万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别:
Pyroptotic Macrophages Traps Against Shigella Infection
焦亡巨噬细胞捕获志贺氏菌感染
- 批准号:
10646015 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别:
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别:
Rac1 and the actin cytoskeleton in renal tubular repair
Rac1 和肌动蛋白细胞骨架在肾小管修复中的作用
- 批准号:
10739610 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别:
Protein modification and the aging phenotype of human skeletal muscle
蛋白质修饰与人类骨骼肌的衰老表型
- 批准号:
10593791 - 财政年份:2023
- 资助金额:
$ 36.45万 - 项目类别: