In situ Cell Engineering for On-demand TIMP Expression in Osteoarthritis

用于骨关节炎按需表达 TIMP 的原位细胞工程

基本信息

  • 批准号:
    10451707
  • 负责人:
  • 金额:
    $ 15.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Osteoarthritis (OA) is a prevalent degenerative joint disorder and the leading cause of disability. Presently, there are no disease-modifying osteoarthritis drugs (DMOADs). Diagnosis and pharmacological intervention occur mostly at a late stage, and current treatments offer only temporary, palliative relief before disease progression necessitates joint replacement. OA prevalence is high, at roughly 27% of those over 40 years old, and occurrence of post-traumatic OA (PTOA) is even higher (over 50%) following injury of large joints such as the knee. Given its high incidence and predictability, PTOA has potential to be treated prophylactically, a strategy that is both conducive to achieving disease-modifying outcomes and commercially/clinically feasible, provided treatment offers long-term protection. We aim to achieve persistent joint protection by permanently converting cells in situ into “on-demand” TIMP-3 “factories”, harnessing TIMP-3 as a pan-MMP inhibitor that blocks multiple aspects of OA pathology, including cartilage degradation, angiogenesis, and inflammation. “On-demand” expression of TIMP-3 will be achieved via a targeted and permanent gene insertion that hijacks the Mmp13 promoter. This approach is based on a nonviral CRISPR-based nanoparticle and activates TIMP-3 expression only when pathological (OA) stimuli are present, minimizing potential side-effects. We propose to optimize a nanoparticle formulation for non-viral gene knock-in and quantify the therapeutic efficacy of TIMP-3 knock-in in vitro and in vivo. This therapy has potential to avoid significant loss in quality of life for patients who experience a large joint injury and is uniquely enabled by our team with expertise in intracellular delivery (Duvall), polymer and nanoparticle chemistry (D’Arcy), genome editing and synthetic biology (Brunger), and PTOA biology (Hasty).
骨关节炎(OA)是一种普遍存在的退行性关节疾病,也是目前导致残疾的主要原因。 没有发生改变疾病的骨关节炎药物(DMOAD)。 大多数处于晚期阶段,目前的治疗只能在疾病进展之前提供暂时的姑息缓解 OA 患病率很高,40 岁以上人群中约 27%,且发生率较高 膝关节等大关节受伤后,创伤后 OA (PTOA) 的发生率甚至更高(超过 50%)。 由于其高发病率和可预测性,PTOA 有可能进行预防性治疗,这是一种既可 有利于实现疾病缓解结果并且商业/临床可行,提供治疗 我们的目标是通过原位永久转化细胞来实现持久的关节保护。 进入“按需”TIMP-3“工厂”,利用 TIMP-3 作为泛 MMP 抑制剂,阻断多个方面 OA 病理学,包括软骨退化、血管生成和炎症的“按需”表达。 TIMP-3 将通过劫持 Mmp13 启动子的有针对性的永久基因插入来实现。 该方法基于非病毒 CRISPR 纳米颗粒,仅在以下情况下激活 TIMP-3 表达: 存在病理(OA)刺激,最大限度地减少潜在的副作用我们建议优化纳米颗粒。 用于非病毒基因敲入的制剂并量化 TIMP-3 敲入的体外和体内治疗效果 这种疗法有可能避免大关节患者生活质量的显着下降。 我们的团队在细胞内递送 (Duvall)、聚合物和 纳米粒子化学 (D’Arcy)、基因组编辑和合成生物学 (Brunger) 以及 PTOA 生物学 (Hasty)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Matthew Brunger其他文献

Jonathan Matthew Brunger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Matthew Brunger', 18)}}的其他基金

Programmed cells for targeted articular regenerative medicine
用于靶向关节再生医学的编程细胞
  • 批准号:
    10289065
  • 财政年份:
    2021
  • 资助金额:
    $ 15.69万
  • 项目类别:
Programmed cells for targeted articular regenerative medicine
用于靶向关节再生医学的编程细胞
  • 批准号:
    10442611
  • 财政年份:
    2021
  • 资助金额:
    $ 15.69万
  • 项目类别:
Engineered Sense and Response Circuits for Stem Cell-Based Tissue Regeneration and Repair
用于基于干细胞的组织再生和修复的工程传感和响应电路
  • 批准号:
    9327723
  • 财政年份:
    2017
  • 资助金额:
    $ 15.69万
  • 项目类别:

相似国自然基金

下丘脑室旁核促肾上腺皮质激素释放激素神经元调控奖赏偏好行为的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
INSM1在静默性促肾上腺皮质激素细胞腺瘤发生发展中的调控机制及潜在靶向治疗研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
促肾上腺皮质激素释放因子通过CRFR1-cAMP-SphK1通路介导肥大细胞脱颗粒参与胰腺癌痛外周敏化
  • 批准号:
    82171232
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
催产素参与双相障碍发病机制的研究:聚焦于促肾上腺皮质激素释放激素与催产素之间的平衡紊乱
  • 批准号:
    81971268
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Dysregulated Immunometabolism and Premature Senescence in Corticosteroid-Refractory Severe Asthma
皮质类固醇难治性严重哮喘的免疫代谢失调和过早衰老
  • 批准号:
    10567868
  • 财政年份:
    2023
  • 资助金额:
    $ 15.69万
  • 项目类别:
Mechanisms of immunological memory-mediated pathogenesis in chronic autoimmune uveitis
慢性自身免疫性葡萄膜炎免疫记忆介导的发病机制
  • 批准号:
    10657851
  • 财政年份:
    2023
  • 资助金额:
    $ 15.69万
  • 项目类别:
Pathogenicity of memory Th17 cells in chronic autoimmune uveitis
记忆性Th17细胞在慢性自身免疫性葡萄膜炎中的致病性
  • 批准号:
    10394923
  • 财政年份:
    2021
  • 资助金额:
    $ 15.69万
  • 项目类别:
Pathogenicity of memory Th17 cells in chronic autoimmune uveitis
记忆性Th17细胞在慢性自身免疫性葡萄膜炎中的致病性
  • 批准号:
    10216752
  • 财政年份:
    2021
  • 资助金额:
    $ 15.69万
  • 项目类别:
Treatment and prevention of osteoarthritis with an intra-articular disease-modifying regenerative therapy
通过关节内疾病修饰再生疗法治疗和预防骨关节炎
  • 批准号:
    10256397
  • 财政年份:
    2021
  • 资助金额:
    $ 15.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了