Tissue Engineering Resource Center
组织工程资源中心
基本信息
- 批准号:10434732
- 负责人:
- 金额:$ 40.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AirAlveolarBiological ProcessBiomimeticsBioreactorsBlood SubstitutesCardiacCardiac MyocytesCardiopulmonaryCell TherapyCell TransplantationCellsCellular Metabolic ProcessClinicClinicalClinical EngineeringComplexCoupledCulture MediaDevelopmentDevicesDiseaseDistalEncapsulatedEnvironmentEpithelialEpithelial CellsEvaluationExcisionFunctional RegenerationFunctional disorderGoalsGrowthHeartHeart InjuriesHumanHydrogelsImageIn SituInfarctionInterventionIschemiaLiverLungLung TransplantationLung diseasesMaintenanceMeasuresMedicineMetabolicMissionModalityModelingMonitorMyocardialMyocardial InfarctionMyocardial IschemiaNatural regenerationOrganOutputPathologicPerfusionPhenotypePhysiologicalProceduresProcessRecoveryRegenerative engineeringResearch PersonnelResourcesSeriesStomachStructure of parenchyma of lungSupporting CellSystemTechnologyTestingTherapeuticTherapeutic InterventionTherapeutic UsesTimeTissue EngineeringTissue constructsTissuesTranslationsTransplantationVisualbaseblood perfusioncardiac regenerationcardiac tissue engineeringcardiopulmonary systemcell typecytokinedesignexosomehuman tissueimage guidedimaging modalityimaging platformimaging systemimproved functioningin vitro Modelinduced pluripotent stem cellinjury recoveryinnovationinsightlung basal segmentlung injurylung regenerationlung repairminimally invasivenext generationnon-invasive monitornoveloperationorgan regenerationpublic health relevancepulmonary functionquantitative imagingreal-time imagesregenerativerepairedresponsetechnology developmenttissue regenerationtissue repairtranslational applicationsventilation
项目摘要
SUMMARY
TRD3 will focus on the development and implementation of bioreactors for engineering clinically
sized tissues and whole organs, with quantitative real-time imaging of biological processes, and
determination of factors of disease remodeling of pathologic states in native whole organs.
Specifically, we plan to develop two classes of next-generation bioreactor systems: (i) Visually guided
bioreactors for lung regeneration by targeted cell replacement and bioactive agents; and (ii) Perfusion
bioreactor for recapitulation of the post-myocardial infarct environment and study the modalities for
regeneration of heart tissue. Our hypothesis is that this new class of imaging enabled bioreactors will
provide considerable insights into the dynamic processes involved in tissue regeneration and thereby
facilitate targeted interventions in complex tissues and whole organs. Two specific aims will be
pursued. Aim 1 is to develop an integrated bioreactor-imaging system for functional regeneration of
human donor lungs rejected as unacceptable for transplantation and to elucidate the factors associated
with the determination of reversibility of the fibrotic process in diseased lungs. The bioreactor will allow
interventions (such as removal and replacement of lung epithelium including associated exosomes) in
targeted regions of the lung (from the upper airway all the way to alveolar spaces), with continuous
non-invasive monitoring of the lung function during interventions and repair. Aim 2 is to develop a
perfusion bioreactor system for heart tissue regeneration. The bioreactor will be designed to
recapitulate the post infarct environment and investigate therapeutic modalities, with focus on cell-free
treatment using exosomes secreted by therapeutic cells. An integrated controller will allow for the real
time control of medium perfusion in response to measured metabolic parameters. Overall, the TRD3
projects aim to advance the field of tissue engineering by offering these unique bioreactor-imaging
platforms to investigators as well as clinicians, and enabling them to obtain quantitative insights into the
dynamics of growth and regeneration of tissues and organs to promote translational applications in lung
transplantation and management of ischemic heart disease.
概括
TRD3将专注于临床工程生物反应器的开发和实施
大小组织和整个器官,对生物过程进行定量实时成像,以及
确定天然整个器官病理状态疾病重塑的因素。
具体来说,我们计划开发两类下一代生物反应器系统:(i)视觉引导
通过靶向细胞替代和生物活性剂进行肺再生的生物反应器; (ii) 灌注
用于重现心肌梗塞后环境的生物反应器并研究其模式
心脏组织的再生。我们的假设是,这种新型成像生物反应器将
提供对组织再生所涉及的动态过程的深入见解,从而
促进对复杂组织和整个器官的有针对性的干预。两个具体目标将是
追击。目标 1 是开发一种用于功能再生的集成生物反应器成像系统
人类供体肺因不可接受移植而被拒绝并阐明相关因素
确定患病肺部纤维化过程的可逆性。生物反应器将允许
干预措施(例如去除和更换肺上皮,包括相关的外泌体)
肺部的目标区域(从上呼吸道一直到肺泡腔),持续
在干预和修复过程中对肺功能进行无创监测。目标 2 是开发一个
用于心脏组织再生的灌注生物反应器系统。该生物反应器的设计目的是
概括梗塞后环境并研究治疗方式,重点关注无细胞
使用治疗细胞分泌的外泌体进行治疗。集成控制器将允许真正的
根据测量的代谢参数控制培养基灌注的时间。总体而言,TRD3
项目旨在通过提供这些独特的生物反应器成像来推进组织工程领域
为研究人员和临床医生提供平台,使他们能够获得对疾病的定量见解
组织和器官的生长和再生动力学,以促进肺的转化应用
缺血性心脏病的移植和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barry M. Fine其他文献
BeatProfiler: Multimodal In Vitro Analysis of Cardiac Function Enables Machine Learning Classification of Diseases and Drugs
BeatProfiler:心脏功能的多模式体外分析支持疾病和药物的机器学习分类
- DOI:
10.1109/ojemb.2024.3377461 - 发表时间:
2024-04-05 - 期刊:
- 影响因子:5.8
- 作者:
Youngbin Kim;Kunlun Wang;Roberta I. Lock;Trevor R. Nash;Sharon Fleischer;Bryan Z. Wang;Barry M. Fine;G. Vunjak‐Novakovic - 通讯作者:
G. Vunjak‐Novakovic
Barry M. Fine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barry M. Fine', 18)}}的其他基金
STK25 phosphorylates PRKAR1A to regulate PKA signaling
STK25 磷酸化 PRKAR1A 来调节 PKA 信号传导
- 批准号:
10736399 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
The STK25 Signaling Pathway in Human Cardiac Cells
人类心肌细胞中的 STK25 信号通路
- 批准号:
10306340 - 财政年份:2017
- 资助金额:
$ 40.22万 - 项目类别:
The STK25 Signaling Pathway in Human Cardiac Cells
人类心肌细胞中的 STK25 信号通路
- 批准号:
10067380 - 财政年份:2017
- 资助金额:
$ 40.22万 - 项目类别:
相似国自然基金
MUC1与BMP4相互作用影响肺泡再生和肺气肿发生发展的机制研究
- 批准号:82330002
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
Birc6泛素化调控Beclin-1在肺纤维化肺泡上皮细胞衰老中的功能及机制研究
- 批准号:82300093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Galectin-1抑制肺泡巨噬细胞线粒体损伤介导的NLRP3活化减轻流感致急性肺损伤的机制研究
- 批准号:82300005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HD5-myr靶向冠状病毒N蛋白CTD结构域调控肺泡原驻巨噬细胞功能重塑在肺损伤中的保护作用及机制研究
- 批准号:82372184
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
去甲肾上腺素调控肺泡上皮细胞焦亡在ARDS中的作用及机制研究
- 批准号:82301442
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
The role of oral spirochete virulence factors in the impairment of neutrophil response
口腔螺旋体毒力因子在中性粒细胞反应损伤中的作用
- 批准号:
10866869 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
Flu Vaccine Production Using a Novel Pandemic Response and Prevention Manufacturing Method
使用新型流行病应对和预防制造方法生产流感疫苗
- 批准号:
10698431 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
The Involvement of PBRM1 in Alveolar Macrophage Development, Homeostasis, and Immune Function
PBRM1 参与肺泡巨噬细胞发育、稳态和免疫功能
- 批准号:
10605100 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别:
Experimental Cellular Approaches to Genotype × Environment Interaction
基因型与环境相互作用的实验细胞方法
- 批准号:
10630638 - 财政年份:2023
- 资助金额:
$ 40.22万 - 项目类别: