High-Throughput, Multiplexing-Ready Intracellular Pressure Probes
高通量、可多重使用的细胞内压力探针
基本信息
- 批准号:10431428
- 负责人:
- 金额:$ 26.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-17 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActomyosinAddressAnteriorCalibrationCell ShapeCell SizeCell divisionCell membraneCell physiologyCellsCellular biologyCoinComplexContractsCytoplasmCytoskeletonDNADataDevelopmentElectrodesElectroporationEmbryoEnergy TransferEquilibriumExhibitsExtracellular MatrixFibroblastsFluorescence Resonance Energy TransferFosteringFour-dimensionalHeterogeneityHumanImageIndividualLipid BilayersLiposomesMapsMeasurementMeasuresMechanicsMembraneMethodsMicroelectrodesMotionNanotechnologyPhenotypePhysiologicalPositioning AttributeProcessReaction TimeResearchResolutionRuptureShapesSignal TransductionSiliconStructureSubcellular SpacesSurfaceTechnologyTestingTimeVacuumVariantWaterbasebiophysical propertiescell behaviorcell cortexcell motilitycytotoxicitydensitydesignextracellularfluorophoreinsightmacromoleculemigrationmultiplexed imagingnanoformsnanosizednovelperformance testspressurepressure sensorpreventprogramsrational designresponsescaffoldsensorspatiotemporalstemsubmicrontemporal measurementtoolwater channel
项目摘要
PROJECT SUMMARY
It is known that at the level of a single cell, intracellular pressure governs motility, shape, volume, and proliferation.
Mounting evidence suggests that pressure can vary within a single cell and the compartmentalization of pressure
may be essential for dynamic cell function. Thus, it is essential to develop approaches to map the heterogeneous
intracellular pressure within a single cell at submicron resolution given the technical limitations of the current
technology. Specifically, it is challenging to study how intracellular pressure regulates cellular processes, such
as protrusion of the cell cortex, heterogeneously and dynamically, to result in certain phenotypes, such as
directional migration. This challenge stems from the lack of nano-sized sensors that are compatible for high-
throughput multiplexing imaging so that local intracellular pressure and other dynamic processes can be
simultaneously measured across the cell.
Herein we propose to develop a high-throughput, multiplexing-ready intracellular probe in the form of nano-
sized liposomes enclosed by DNA-based scaffold with aquaporin molecules distributed in the lipid bilayer.
Joining the DNA scaffold and the aquaporin-embedded liposome are elastic DNA tethers conjugated with
Foster Resonance Energy Transfer (FRET) donor and acceptor fluorophores at prescribed spacing, which
extend or contract as the result of pressure-dependent changes to liposome volume. The nano-sized pressure
sensor, coined “aquaporin-laced liposome pressure sensor (ALPS)”, will be delivered to the cytoplasm in
quantity. Upon pressure changes in the cytoplasm, the internalized ALPS will change its volume by water efflux
or influx through the aquaporin, while the DNA scaffold stabilizes the liposome to prevent collapse or rupture.
As a proof of concept, we will then use ALPS to map the dynamic pressure field induced within single cells
using compartmentalized pressure to migrate within 3D matrix; the results will be compared to the direct
measurements obtained by 0.5-μm micro-electrodes with limited spatial resolution, the current state-of-art. If
successful, we will generate a novel tool for measuring intracellular pressure with unprecedented
spatiotemporal resolution, which promises to provide insights on how local intracellular pressure changes
dynamically as cells navigate the 3D terrain.
项目概要
众所周知,在单细胞水平上,细胞内压力控制运动、形状、体积和增殖。
越来越多的证据表明,压力可以在单个细胞内发生变化,并且压力的划分
可能对于动态细胞功能至关重要,因此,有必要开发绘制异质图谱的方法。
考虑到当前的技术限制,亚微米分辨率下单个细胞内的细胞内压力
具体来说,研究细胞内压力如何调节细胞过程是一项挑战。
作为细胞皮层的突出,异质且动态地产生某些表型,例如
这一挑战源于缺乏与高通量兼容的纳米尺寸传感器。
吞吐量多重成像,以便局部细胞内压力和其他动态过程可以
在整个细胞上同时测量。
在此,我们建议开发一种纳米形式的高通量、可多重使用的细胞内探针。
大小的脂质体被基于 DNA 的支架包围,水通道蛋白分子分布在脂质双层中。
连接 DNA 支架和水通道蛋白包埋脂质体的是弹性 DNA 系链,
以规定的间距培养共振能量转移 (FRET) 供体和受体荧光团,这
由于脂质体体积的压力依赖性变化而延伸或收缩。
传感器,被称为“水通道蛋白脂质体压力传感器(ALPS)”,将被输送到细胞质
当细胞质中的压力发生变化时,内化的 ALPS 将通过水流出来改变其体积。
或通过水通道蛋白流入,而DNA支架稳定脂质体以防止塌陷或破裂。
作为概念证明,我们将使用 ALPS 绘制单细胞内诱发的动态压力场图
使用分区压力在 3D 矩阵内迁移;结果将与直接进行比较;
通过 0.5 μm 微电极获得的测量结果具有有限的空间分辨率,这是当前最先进的技术。
如果成功的话,我们将产生一种新的工具,以前所未有的方式测量细胞内压力
时空分辨率,有望提供有关局部细胞内压力如何变化的见解
当细胞在 3D 地形中导航时动态变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Chen其他文献
Yun Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun Chen', 18)}}的其他基金
High-Throughput, Multiplexing-Ready Intracellular Pressure Probes
高通量、可多重使用的细胞内压力探针
- 批准号:
10705580 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 26.88万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 26.88万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10521605 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10671046 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10521605 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别: