Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
基本信息
- 批准号:10417214
- 负责人:
- 金额:$ 63.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectiveAtlasesAutomobile DrivingBehaviorBehavioralBehavioral GeneticsBiologicalBipolar DepressionBipolar DisorderBrainCategoriesClassificationClassification SchemeClinicalCognitionCognitiveComplexDataDevelopmentDiagnosisDiagnosticDimensionsDiseaseDissectionEtiologyExecutive DysfunctionFingerprintFutureGene Expression ProfileGeneral PopulationGenerationsGenesGeneticGenetic RiskGenetic TranscriptionGenetic studyGenomic approachGenomicsHealthHeritabilityHeterogeneityHumanImpairmentIndividualIndividual DifferencesLateralLinkMaintenanceMapsMeasuresMental HealthMental disordersMethodsModelingMolecularMonitorNational Institute of Mental HealthNatureNegative ValenceNeurobiologyParietalParticipantPathogenesisPathologyPatientsPatternPerformancePhenotypePopulationPsychiatric DiagnosisPsychopathologyPsychosesPsychotic DisordersResearchResearch PersonnelResourcesRiskSchizophreniaSeveritiesSeverity of illnessSocial FunctioningStrategic PlanningSymptomsSyndromeSystemTemporal LobeTranslatingUnipolar DepressionVariantVulnerable PopulationsWorkbehavioral genomicsclinical biomarkersclinically relevantcognitive controlcomorbidityconnectomedisease classificationfunctional genomicsimaging geneticsin vivoindividual variationinsightnetwork modelsneural circuitneural networkneurogeneticsneuroimagingnovelpatient populationpredictive modelingprofiles in patientspsychologicrelating to nervous systemsocial deficitstrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Converging evidence indicates that the boundaries separating nominally distinct psychiatric diagnoses are not
sharp or discontinuous with normal behavioral traits and brain function. In healthy populations, individual
differences in behavior are reflected in variability across the collective set of functional brain connections
(functional connectome). These data suggest that the spectra of transdiagnostic symptom profiles observed in
patient populations may arise through detectable patterns of network function. The intrinsic connectivity of the
functional connectome is under strong genetic influence. Spatial patterns of gene transcription recapitulate the
topography of large-scale brain networks, potentially driving comorbidity between symptomatically related
disorders. However, most of what we currently know about the human connectome comes from the study of
healthy populations, impeding the development of fully dimensional models of brain function and obscuring the
interactions through which genetic and neurobiological variation might coalesce to support suites of behaviors
and illness risk within an individual. To address the disconnect between mechanism and nosology, the NIMH
strategic plan calls for a bottom-up reappraisal of psychopathology across multiple levels of analysis;
facilitating the study of relationships from genes to neural circuits and networks through behavior, cutting
across disorders as traditionally defined. Directly addressing these objectives, our proposal will link individual
variation in functional connectomes with symptom profiles across unipolar depression, bipolar depression, and
schizophrenia through the combined application of neuroimaging, behavioral, and genomic methods. We will
establish key biological and clinical features of the functional connectome in three stages. First, we recently
established that disruptions within the frontoparietal network (spanning aspects of dorsolateral and
dorsomedial prefrontal, lateral parietal, and posterior temporal cortices) reflect a shared feature of
schizophrenia and psychotic bipolar disorder. Building upon this work, we will quantify the extent to which
frontoparietal connectivity may reflect a disorder-general marker of symptom severity across both affective and
psychotic illnesses, validating the key psychological features (Aim 1). Second, we will map transdiagnostic
functional connectome variability to the diversity of clinical presentations, extending our analyses across cortex
to develop predictive models of multidimensional symptom profiles (Aim 2). Third, we will identify novel
patterns of gene expression that follow the spatial organization of large-scale brain networks, establish the
impact of contributing loci on in vivo connectome functioning, and assess co-heritability with illness risk (Aim
3). Completion of these aims will yield insights into the neural, behavioral, and genetic basis of affective and
psychotic illnesses, providing a crucial step towards the establishment of a new framework for psychiatric
classification grounded in etiology and pathogenesis.
项目概要/摘要
汇聚的证据表明,名义上不同的精神病学诊断之间的界限并不存在。
与正常行为特征和大脑功能尖锐或不连续。在健康人群中,个体
行为的差异反映在大脑功能连接集合的变异性上
(功能连接体)。这些数据表明,在
患者群体可能通过可检测的网络功能模式而出现。的内在连通性
功能连接组受到强烈的遗传影响。基因转录的空间模式概括了
大规模大脑网络的拓扑结构,可能会导致症状相关的合并症
失调。然而,我们目前对人类连接组的了解大部分来自对
健康人群,阻碍了大脑功能全维度模型的发展并模糊了
遗传和神经生物学变异可能通过相互作用来支持一系列行为
以及个人的疾病风险。为了解决机制和疾病分类学之间的脱节问题,NIMH
战略计划要求跨多个分析层次对精神病理学进行自下而上的重新评估;
通过行为促进从基因到神经回路和网络的关系的研究,
跨越传统定义的疾病。直接解决这些目标,我们的提案将把个人联系起来
功能性连接组与单相抑郁症、双相抑郁症和抑郁症症状特征的差异
通过神经影像学、行为学和基因组方法的结合应用来治疗精神分裂症。我们将
分三个阶段建立功能性连接组的关键生物学和临床特征。首先,我们最近
确定额顶网络内的破坏(跨越背外侧和
背内侧前额叶、外侧顶叶和后颞叶皮质)反映了共同的特征
精神分裂症和精神病性双相情感障碍。在此工作的基础上,我们将量化
额顶叶连接可能反映情感和症状严重程度的障碍一般标志
精神病,验证关键心理特征(目标 1)。其次,我们将绘制跨诊断图
功能连接组变异性与临床表现的多样性,将我们的分析扩展到整个皮质
开发多维症状特征的预测模型(目标 2)。三、我们要识别小说
遵循大规模大脑网络空间组织的基因表达模式,建立
贡献位点对体内连接组功能的影响,并评估疾病风险的共同遗传性(目标
3)。完成这些目标将深入了解情感和行为的神经、行为和遗传基础。
精神疾病,为建立精神疾病新框架迈出了关键一步
基于病因学和发病机制的分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AVRAM J HOLMES其他文献
AVRAM J HOLMES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AVRAM J HOLMES', 18)}}的其他基金
Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
- 批准号:
10187655 - 财政年份:2019
- 资助金额:
$ 63.12万 - 项目类别:
Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
- 批准号:
9797148 - 财政年份:2019
- 资助金额:
$ 63.12万 - 项目类别:
Functional genomics of the human connectome in psychiatric illness
精神疾病中人类连接组的功能基因组学
- 批准号:
10629302 - 财政年份:2019
- 资助金额:
$ 63.12万 - 项目类别:
Dimensional Neurogenetic Markers of Limbic System Integrity & Psychiatric Illness
边缘系统完整性的维度神经遗传标记
- 批准号:
8581402 - 财政年份:2013
- 资助金额:
$ 63.12万 - 项目类别:
Dimensional Neurogenetic Markers of Limbic System Integrity & Psychiatric Illness
边缘系统完整性的维度神经遗传标记
- 批准号:
9319305 - 财政年份:2013
- 资助金额:
$ 63.12万 - 项目类别:
Action Monitoring in depression: ERP and fMRI correlates
抑郁症的行动监测:ERP 和 fMRI 的相关性
- 批准号:
7392191 - 财政年份:2007
- 资助金额:
$ 63.12万 - 项目类别:
Action Monitoring in depression: ERP and fMRI correlates
抑郁症的行动监测:ERP 和 fMRI 的相关性
- 批准号:
7276473 - 财政年份:2007
- 资助金额:
$ 63.12万 - 项目类别:
相似国自然基金
靶向初级运动皮层改善慢性痛与情感障碍共病的环路机制及干预研究
- 批准号:82330036
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
情感还是语义?表情符号对社交媒体旅游体验分享有用性的影响机理研究
- 批准号:72362009
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
自然场景下基于自监督的精准视频情感识别研究
- 批准号:62362003
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向多模态情感分析的特征挖掘和超图推理关键技术研究
- 批准号:62362070
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
地理场景与旅游情感的时空关联与影响机理研究
- 批准号:42301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10391136 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别:
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10705163 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别:
Personalized spatiotemporal hemodynamic response models for functional magnetic resonance imaging
用于功能磁共振成像的个性化时空血流动力学响应模型
- 批准号:
10585582 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
- 批准号:
10548825 - 财政年份:2022
- 资助金额:
$ 63.12万 - 项目类别: