Bioinformatics for post-traumatic stress
创伤后应激的生物信息学
基本信息
- 批准号:10412074
- 负责人:
- 金额:$ 50.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:BioinformaticsBiologicalBiological MarkersCategoriesClinicalClinical DataClinical ResearchClinical TrialsClinical Trials DatabaseComplexDataData AnalysesData SetDatabasesDevelopmentDiagnosticDiagnostic testsDiagnostics ResearchDimensionsDiseaseExposure toGenomicsGrowthImageLaboratoriesLinear ModelsLinear RegressionsLogisticsMachine LearningMapsMeasuresMedical HistoryMental HealthMental disordersMetadataMethodsModelingNational Institute of Mental HealthNervous System TraumaNeurocognitiveObservational StudyOutcomePathologyPatientsPatternPersonsPhenotypePopulationPrecision therapeuticsPrediction of Response to TherapyPredictive AnalyticsPrincipal Component AnalysisPsychiatryPsychopathologyRecoveryReproducibilityResearchResearch Domain CriteriaResearch Project GrantsSeverity of illnessSourceStatistical MethodsSupervisionSymptomsSyndromeTechniquesTestingTherapeuticTraumaTrauma ResearchTrauma patientTrauma recoveryTraumatic Brain InjuryValidationVeteransWorkaccurate diagnosisanalytical toolbasebiobehaviorcombat veterancomputational platformdata archivedata complexitydata miningdata repositorydata sharingdemographicsdiagnostic criteriadiverse datafeature selectionfederated computingguided inquiryhands-on learningheterogenous datain silicoindexinginnovationinsightinterestlarge datasetsmachine learning methodmultidimensional datamultimodalitypatient populationpatient subsetspost-traumatic stresspost-traumatic symptomsprecision medicinepredictive modelingpredictive testpsychologicresearch and developmentresearch studyresponsestatisticsstress related disordersupervised learningsymptomatologytooltrauma exposuretraumatic eventtreatment planningtreatment responderstreatment responseunsupervised learningvector
项目摘要
Project Summary/Abstract
Maladaptive complications following trauma, including post-traumatic stress (PTS), are highly prevalent in both
veterans and civilians, and have been difficult to accurately diagnose, manage and treat. Debate regarding
diagnostic criteria and the need to represent the full spectrum of inter-connected features contributing to
psychopathology has spawned the development of the Research Domain Criteria (RDoC) by the National
Institute of Mental Health (NIMH). RDoC is a developing framework to help guide the discovery and validation
of new dimensions of mental health disorders and their relationships to underlying biological mechanisms.
NIMH now has a rich federated database that currently houses raw data from RDoC-sponsored clinical
research, and clinical trial data from the National Database of Clinical Trials (NDCT) with information that may
help to unlock the complex and overlapping relationships between symptoms of PTS and the underlying
biomarkers to fuel improvements on diagnostic and therapeutic frameworks for trauma recovery. The
proposed project will apply bioinformatics and machine learning analytical tools to these large, heterogeneous
datasets to identify and validate new research dimensions of trauma-related psychopathology and treatment
response trajectories and their predictors. Aim 1 will develop an in silico trauma patient population by
integrating data from diverse sources, including cross-sectional and observational longitudinal clinical studies
housed within available data repositories for trauma and other related mental health research. Data will include
medical history, demographics, diagnostic tests, clinical outcomes, psychological assessments, genomics,
imaging, and other relevant study and meta-data. Aim 2 will identify multiple dimensions of PTS diagnostic
criteria, using a combination of unsupervised dimension-reduction statistical methods, internal and external
cross-validation, and supervised hypothesis testing of predictive models to understand the heterogeneous
subtypes of PTS. Aim 3 will deploy unsupervised machine learning methods, such as topological data analysis
and hierarchical clustering, to identify unique clusters of patients based on symptomatology to develop
clustering methods for precision mapping of PTS patients based on disease severity. Aim 4 will use supervised
machine learning techniques for targeted predictive analytics focused on identifying treatment responders from
the NDCT, and identification of latent variables that predict treatment response. The results of the proposed
research project will greatly enrich the field of computational psychiatry research to identify conserved
dimensions associated with the complex relationships of psychopathology and precision treatment planning
following exposure to traumatic events.
项目概要/摘要
创伤后的适应不良并发症,包括创伤后应激障碍(PTS),在这两种疾病中都非常普遍。
退伍军人和平民,并且很难准确诊断、管理和治疗。关于的辩论
诊断标准以及代表所有相互关联的特征的需要
精神病理学催生了国家研究领域标准(RDoC)的发展
心理健康研究所(NIMH)。 RDoC 是一个帮助指导发现和验证的开发框架
精神健康障碍的新维度及其与潜在生物机制的关系。
NIMH 现在拥有丰富的联合数据库,其中包含来自 RDoC 赞助的临床的原始数据
来自国家临床试验数据库 (NDCT) 的研究和临床试验数据,其中包含可能的信息
有助于解开 PTS 症状与潜在症状之间复杂且重叠的关系
生物标记物可促进创伤康复诊断和治疗框架的改进。这
拟议的项目将应用生物信息学和机器学习分析工具来分析这些大型的、异构的
用于识别和验证创伤相关精神病理学和治疗的新研究维度的数据集
响应轨迹及其预测因子。目标 1 将通过以下方式开发计算机模拟创伤患者群体:
整合不同来源的数据,包括横断面和观察性纵向临床研究
存放在用于创伤和其他相关心理健康研究的可用数据存储库中。数据将包括
病史、人口统计、诊断测试、临床结果、心理评估、基因组学、
成像以及其他相关研究和元数据。目标 2 将确定 PTS 诊断的多个维度
标准,使用无监督降维统计方法、内部和外部的组合
交叉验证和预测模型的监督假设检验以了解异质性
PTS 的亚型。目标3将部署无监督机器学习方法,例如拓扑数据分析
和层次聚类,根据症状学识别独特的患者群体,以开发
根据疾病严重程度对 PTS 患者进行精确绘图的聚类方法。目标 4 将使用监督
用于有针对性的预测分析的机器学习技术,重点是识别治疗反应者
NDCT 以及预测治疗反应的潜在变量的识别。拟议的结果
研究项目将极大地丰富计算精神病学研究领域,以识别保守的
与精神病理学和精确治疗计划的复杂关系相关的维度
经历创伤事件后。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Causal discovery replicates symptomatic and functional interrelations of posttraumatic stress across five patient populations.
因果发现复制了五个患者群体中创伤后应激的症状和功能相互关系。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Pierce, Benjamin;Kirsh, Thomas;Ferguson, Adam R;Neylan, Thomas C;Ma, Sisi;Kummerfeld, Erich;Cohen, Beth E;Nielson, Jessica L
- 通讯作者:Nielson, Jessica L
Increased suicidal ideation and suicide attempts in COVID-19 patients in the United States: Statistics from a large national insurance billing database.
美国 COVID-19 患者的自杀意念和自杀企图增加:来自大型国家保险计费数据库的统计数据。
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:11.3
- 作者:Reinke, Michael;Falke, Chloe;Cohen, Ken;Anderson, David;Cullen, Kathryn R;Nielson, Jessica L
- 通讯作者:Nielson, Jessica L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erich Kummerfeld其他文献
Erich Kummerfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erich Kummerfeld', 18)}}的其他基金
相似国自然基金
激素敏感癌症的演化标志物发现:知识引导的生物信息学模型
- 批准号:32270690
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
尿液微粒转录组学标志物在糖尿病肾病早期诊断中的研究
- 批准号:81900698
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于多维组学数据的恶性肿瘤新型lncRNA分子标记物识别及其调控特征研究
- 批准号:61873193
- 批准年份:2018
- 资助金额:16.0 万元
- 项目类别:面上项目
反义lncRNA标志物筛选策略及其在肝脏缺血再灌注损伤中的应用研究
- 批准号:81672113
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
基于microRNA技术的精神分裂症相关生物标记物的遗传流行病学研究
- 批准号:81673253
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Phase I study of panobinostat in adults with sickle cell disease: novel approach to recruitment and retention
帕比司他治疗成人镰状细胞病的 I 期研究:招募和保留的新方法
- 批准号:
10420453 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Dietary prevention for colorectal cancer: targeting the bile acid/gut microbiome axis
结直肠癌的饮食预防:针对胆汁酸/肠道微生物组轴
- 批准号:
10723195 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
High-dimensional single-cell mapping to define immune signatures of cytomegalovirus-associated rejection in cardiac transplantation
高维单细胞图谱定义心脏移植中巨细胞病毒相关排斥反应的免疫特征
- 批准号:
10816183 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Hawaii Minority Health and Cancer Disparities SPORE
夏威夷少数民族健康与癌症差异 SPORE
- 批准号:
10716152 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别: