Integration of Omic Data to Estimate Mediation or Latent Structures
整合组学数据来估计中介或潜在结构
基本信息
- 批准号:10411240
- 负责人:
- 金额:$ 25.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAreaAutomobile DrivingBiologicalBiological MarkersBiologyCancer EtiologyColorectal CancerComplexComputer softwareDataData SetDevelopmentDiseaseDisease OutcomeEtiologyExposure toFAIR principlesGene ExpressionGenesGeneticGenomicsGoalsHeterogeneityIndividualInvestigationJointsMalignant NeoplasmsMalignant neoplasm of prostateMathematicsMeasurementMeasuresMediatingMediationMediator of activation proteinMethodologyMethodsModelingMolecularMultiomic DataOutcomePathway interactionsPhenotypePopulationPopulation StudyProcessProteomicsResearchRiskRisk FactorsSpecific qualifier valueStatistical MethodsStructureSubgroupTechniquesTechnologyTestingThe Cancer Genome AtlasTimeTissuesTranslationscancer genomicsdata integrationdata reductionfeature selectiongenome wide association studyinnovationinstrumentinterestmetabolomicsmicrobiomemultidimensional datamultiple data typesmultiple omicsnovelphenomicspleiotropismprogramsstatisticstraittranscriptomicsuser friendly software
项目摘要
Project 2: Integration of Omic Data to Estimate Mediation or Latent Structures
Abstract
The omic era is upon us and population-based studies are moving rapidly to measure multiple types of data to
explore the underlying connection between risk factors and outcomes. Integration of data from complementary
avenues of research using novel statistical approaches will result in discoveries within each area of research,
probe the area between, and push innovation forward. Overall, this project focuses on the development of
statistical approaches for the integration of multiple omics data that are suspected, a priori, to act on a disease
or trait outcome via mediation or a latent structured model. The approaches span the analysis of studies with
multiple omic measures on the same individuals to summary statistics from omic data measured from multiple
studies. In Aim 1, we will develop a multi-omic causal inference test (CIT) to facilitate its application to large
multi-omic datasets measured on individuals to simultaneously model multiple risk factors and multiple
mediators. In Aim 2, we will develop an integrative model to estimate latent unknown clusters aiming to
incorporate multiple types of omic measures either measured cross-sectionally or at multiple time points to
jointly estimating subgroups relevant to the outcome of interest. In Aim 3, we will estimate joint causal effects
of intermediate factors or latent-outcome associations using summary statistics for multiple SNPs and multiple
intermediates. We will leverage methodological developments from other projects within the overall program
project and, using expertise and assistance from the computational and translation cores, we will develop
robust, computationally efficient, and user-friendly software for application to applied projects. Overall, these
methods will have a direct impact on applied investigations by facilitating a better understanding of potential
biological mechanisms driving underlying cancer etiology via identifying novel factors, estimating connections
between those factors, and identifying subgroups of individuals with potentially different associated
mechanisms.
项目 2:整合组学数据来估计中介或潜在结构
抽象的
组学时代即将到来,基于人群的研究正在迅速发展,以测量多种类型的数据
探索风险因素和结果之间的潜在联系。整合互补数据
使用新颖的统计方法的研究途径将在每个研究领域产生新的发现,
探索两者之间的领域,推动创新向前发展。总体而言,该项目的重点是开发
用于整合先验怀疑对疾病起作用的多个组学数据的统计方法
或通过中介或潜在结构化模型得到的特质结果。这些方法涵盖了研究分析
对同一个人进行多项组学测量,以汇总从多个组测量的组学数据的统计数据
研究。在目标 1 中,我们将开发多组学因果推理测试(CIT),以促进其在大规模应用中的应用。
对个体进行测量的多组学数据集,可同时对多个风险因素和多个风险因素进行建模
调解员。在目标 2 中,我们将开发一个综合模型来估计潜在的未知簇,旨在
结合多种类型的组学测量,无论是横截面测量还是在多个时间点测量
联合估计与感兴趣的结果相关的子组。在目标 3 中,我们将估计联合因果效应
使用多个 SNP 和多个 SNP 的汇总统计来分析中间因素或潜在结果关联
中间体。我们将利用整个计划中其他项目的方法发展
项目,并利用计算和翻译核心的专业知识和帮助,我们将开发
强大、计算高效且用户友好的软件,适用于应用项目。总体而言,这些
方法将通过促进更好地了解潜在的研究对应用研究产生直接影响
通过识别新因素、估计关联来驱动潜在癌症病因学的生物机制
在这些因素之间进行分析,并确定具有潜在不同相关性的个体亚组
机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David V Conti其他文献
Hierarchical joint analysis of marginal summary statistics-Part II: High-dimensional instrumental analysis of omics data.
边际汇总统计的层次联合分析-第二部分:组学数据的高维仪器分析。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.1
- 作者:
Lai Jiang;Jiayi Shen;Burcu F. Darst;C. Haiman;Nicholas Mancuso;David V Conti - 通讯作者:
David V Conti
Excess pancreatic cancer risk due to smoking and modifying effect of quitting smoking: The Multiethnic Cohort Study
吸烟和戒烟改变效应导致胰腺癌风险过高:多种族队列研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
David Bogumil;D. Stram;Dale L. Preston;S. Pandol;Anna H Wu;R. Mckean;David V Conti;V. Setiawan - 通讯作者:
V. Setiawan
Early Prostate Cancer Deaths Among Men With Higher vs Lower Genetic Risk
遗传风险较高与较低的男性的早期前列腺癌死亡情况
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:13.8
- 作者:
A. Plym;Yiwen Zhang;Konrad H. Stopsack;Emilio Ugalde;Tyler M Seibert;David V Conti;C. Haiman;A. Baras;Tanja Stocks;Isabel Drake;K. Penney;Edward L. Giovannucci;A. Kibel;F. Wiklund;L. Mucci - 通讯作者:
L. Mucci
Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes
包括超过 254,000 名东亚和欧洲后裔的精细绘图分析确定了 136 个假定的结直肠癌易感基因
- DOI:
10.1038/s41467-024-47399-x - 发表时间:
2024-04-26 - 期刊:
- 影响因子:16.6
- 作者:
Zhishan Chen;Xingyi Guo;Ran Tao;J. Huyghe;P. Law;C. Fernández;J. Ping;G. Jia;J. Long;Chao Li;Quanhu Shen;Yuhan Xie;Maria N Timofeeva;Minta Thomas;Stephanie L. Schmit;V. Díez;M. Devall;Ferran Moratalla;Juan Fern;ez;ez;C. Palles;Kitty Sherwood;Sarah E W Briggs;V. Svinti;Kevin Donnelly;S. Farrington;James Blackmur;P. Vaughan;X. Shu;Yingchang Lu;P. Broderick;James B. Studd;T. Harrison;David V Conti;F. Schumacher;Marilena Melas;Gadi Rennert;M. Obón;V. Martín;Jae;Jeongseon Kim;Sun Ha Jee;K. Jung;Sun;Min;Aesun Shin;Yoon;Dong;I. Oze;W. Wen;K. Matsuo;Kochi Matsuda;C. Tanikawa;Zefang Ren;Yu;W. Jia;John L Hopper;M. Jenkins;A. Win;Rish K Pai;Jane C Figueiredo;Robert W. Haile;S. Gallinger;M. Woods;P. Newcomb;David Duggan;J. Cheadle;R. Kaplan;Rachel Kerr;David Kerr;I. Kirac;J. Böhm;J. Mecklin;Pekka Jousilahti;P. Knekt;L. Aaltonen;H. Rissanen;E. Pukkala;Johan G. Eriksson;Tatiana Cajuso;Ulrika A. Hänninen;Johanna Kondelin;Kimmo Palin;Tomas Tanskanen;L. Renkonen;S. Männistö;D. Albanes;S. Weinstein;Edward Ruiz;Julie R Palmer;D. Buchanan;Elizabeth A Platz;K. Visvanathan;C. Ulrich;Erin M Siegel;S. Brezina;A. Gsur;P. Campbell;J. Chang;M. Hoffmeister;Hermann Brenner;M L Slattery;John D. Potter;Kostas K. Tsilidis;Matthias B. Schulze;Marc J Gunter;N. Murphy;Antoni Castells;S. Castellví;Leticia Moreira;V. Arndt;A. Shcherbina;D. T. Bishop;Graham G. Giles;M. Southey;G. Idos;K. McDonnell;Zomoroda Abu;J. Greenson;Katerina Shulman;F. Lejbkowicz;K. Offit;Yu;R. Steinfelder;T. Keku;B. van Guelpen;T. Hudson;H. Hampel;R. Pearlman;S. I. Berndt;Richard B Hayes;Maria Elena Martinez;Sushma S. Thomas;Paul D. P. Pharoah;S. Larsson;Yun Yen;H. Lenz;Emily White;Li Li;K. Doheny;E. Pugh;T. Shelford;Andrew T. Chan;Marcia Cruz;A. Lindblom;David J Hunter;Amit D Joshi;C. Schafmayer;P. Scacheri;A. Kundaje;Robert E. Schoen;J. Hampe;Z. Stadler;P. Vodicka;L. Vodickova;Veronika Vymetálková;C. Edlund;W. Gauderman;David Shibata;A. Tol;Sanford Markowitz;Andre E Kim;S. Chanock;F. V. van Duijnhoven;Edith J M Feskens;L. Sakoda;M. Gago;Alicja Wolk;Barbara Pardini;L. FitzGerald;Soo;S. Ogino;Stephanie A. Bien;C. Kooperberg;Christopher I. Li;Yi Lin;Ross L Prentice;C. Qu;S. Bézieau;T. Yamaji;N. Sawada;M. Iwasaki;L. Le March;Anna H Wu;C. Qu;C. McNeil;G. Coetzee;C. Hayward;I. Deary;Sarah E. Harris;E. Theodoratou;S. Reid;Marion Walker;L. Ooi;Ken S. Lau;Hongyu Zhao;L. Hsu;Q. Cai;Malcolm G Dunlop;S. Gruber;R. Houlston;V. Moreno;Graham Casey;Ulrike Peters;Ian P M Tomlinson;Wei - 通讯作者:
Wei
A new GWAS and meta-analysis with 1000 Genomes imputation identifies novel risk variants for colorectal cancer
一项新的 GWAS 和 1000 个基因组插补的荟萃分析确定了结直肠癌的新风险变异
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Nada Al;N. Whiffin;F. Hosking;C. Palles;P. Law;S. Farrington;Sara E. Dobbins;Rebecca Harris;M. Gorman;Albert Tenesa;Brian F. Meyer;S. Wakil;B. Kinnersley;Harry Campbell;Lynn Martin;Christopher G. Smith;S. Idziaszczyk;E. Barclay;T. S. Maughan;Richard Kaplan;Rachel Kerr;David J. Kerr;Daniel D. Buchannan;A. Win;J. Hopper;M. Jenkins;N. Lindor;Polly A. Newcomb;S. Gallinger;David V Conti;F. Schumacher;Graham Casey;Malcolm G. Dunlop;Ian P. Tomlinson;J. Cheadle;R. Houlston - 通讯作者:
R. Houlston
David V Conti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David V Conti', 18)}}的其他基金
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
- 批准号:
10212708 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
- 批准号:
10431853 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Leveraging Diversity in Cancer Epidemiology Cohorts and Novel Methods to Improve Polygenic Risk Scores
利用癌症流行病学队列的多样性和新方法来提高多基因风险评分
- 批准号:
10629437 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Multiethnic GWAS and TWAS to Inform Risk Prediction for Prostate Cancer
多种族 GWAS 和 TWAS 为前列腺癌风险预测提供信息
- 批准号:
10394795 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Multiethnic GWAS and TWAS to Inform Risk Prediction for Prostate Cancer
多种族 GWAS 和 TWAS 为前列腺癌风险预测提供信息
- 批准号:
10613934 - 财政年份:2021
- 资助金额:
$ 25.68万 - 项目类别:
Core D: Data Management, Biostatistics, and Bioinformatics
核心 D:数据管理、生物统计学和生物信息学
- 批准号:
9982840 - 财政年份:2018
- 资助金额:
$ 25.68万 - 项目类别:
Core D: Data Management, Biostatistics, and Bioinformatics
核心 D:数据管理、生物统计学和生物信息学
- 批准号:
10447158 - 财政年份:2018
- 资助金额:
$ 25.68万 - 项目类别:
Core D: Data Management, Biostatistics, and Bioinformatics
核心 D:数据管理、生物统计学和生物信息学
- 批准号:
10249999 - 财政年份:2018
- 资助金额:
$ 25.68万 - 项目类别:
Integration of Omic Data to Estimate Mediation or Latent Structures
整合组学数据来估计中介或潜在结构
- 批准号:
10707453 - 财政年份:2016
- 资助金额:
$ 25.68万 - 项目类别:
Incorporating intermediate biomarkers of folate with colorectal cancer
将叶酸中间生物标志物与结直肠癌结合起来
- 批准号:
8329606 - 财政年份:2011
- 资助金额:
$ 25.68万 - 项目类别:
相似国自然基金
多区域环境因素复杂暴露反应关系的空间联合估计方法研究
- 批准号:82373689
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
- 批准号:72373129
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Targeting Oncogenic PELP1/SRC-3 Signaling Complexes in ER+ Breast Cancer
靶向 ER 乳腺癌中的致癌 PELP1/SRC-3 信号复合物
- 批准号:
10301265 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别:
Challenging Classical Theories in Spatial Cognition: Contrasting Translator and Comparator Models of Human Retrosplenial Function
挑战空间认知中的经典理论:对比人类压后功能的翻译模型和比较模型
- 批准号:
10569490 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别:
Strengthening perinatal healthcare utilization and quality of care for Indigenous and low socioeconomic status women through systems change: integrating person, provider, and policy perspectives.
通过系统变革,加强对土著和低社会经济地位妇女的围产期保健利用和护理质量:整合个人、提供者和政策观点。
- 批准号:
10748659 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别:
The Illinois Precision Medicine Consortium (IPMC) All of Us Research Program Site
伊利诺伊州精准医学联盟 (IPMC) All of Us 研究计划网站
- 批准号:
10872859 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别:
Microbiome-gut-brain dysfunction in prodromal and symptomatic Lewy body diseases
前驱期和症状性路易体病中的微生物组-肠-脑功能障碍
- 批准号:
10720677 - 财政年份:2023
- 资助金额:
$ 25.68万 - 项目类别: