Abramson Cancer Center Support Grant
艾布拉姆森癌症中心支持补助金
基本信息
- 批准号:10408409
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAfrican AmericanAgeAlgorithmsAreaCancer CenterCancer Center Support GrantCancer EtiologyCessation of lifeClinicClinicalCodeColonoscopyColorectal AdenomaColorectal CancerCommunitiesConsumptionCountyDataDetectionDiagnosisDiseaseEffectivenessElectronic Health RecordFamily PracticeFrequenciesGoalsGuidelinesHispanicsImmunochemistryImmunohistochemistryIncidenceIncomeIndividualInstructionInternal MedicineInterventionIntestinesKnowledgeMachine LearningMalignant NeoplasmsMedicineMethodsMinorityMissionModelingOutcomePatient CarePatientsPennsylvaniaPerformancePhiladelphiaPovertyPoverty AreasPreparationPrimary Health CareProcessProgram EffectivenessPublic HealthRecording of previous eventsRelative RisksResearchResearch PersonnelResearch ProposalsResourcesRetrospective cohortRiskRisk FactorsScreening for cancerServicesTelephoneTestingTimeTrainingTransportationUnited StatesUniversitiesadenomaadherence ratebasecancer diagnosiscancer riskcohortcolon cancer screeningcolorectal cancer preventioncolorectal cancer riskcolorectal cancer screeningcommunity livingdesigneffectiveness evaluationethnic diversityethnic minority populationevidence basefeasibility testinghigh riskhigh risk populationimprovedmachine learning algorithmminority communitiesmortalitynovelpatient populationprogramsracial diversityracial minorityrisk stratificationscreeningscreening guidelinessocialsocial factorssocial health determinantssocioeconomicssuccesstransportation accessunderserved areausability
项目摘要
PROJECT SUMMARY/ABSTRACT
Colorectal cancer is the 4th most common cancer diagnosed and the 2nd most common cause of cancer death
in the United States. The age-adjusted incidence of CRC in Philadelphia County – a persistently high poverty
area– is nearly 25% above the national average. Guideline-based screening for CRC via colonoscopy or fecal
immunohistochemistry (FIT) reduces CRC-associated mortality. Despite the proven benefit of regular
colonoscopy, CRC screening completion rates remain only around 50% in Philadelphia County and are
consistently 10-15% lower for African-Americans than White individuals living in Philadelphia County. Adverse
social determinants of health such as high poverty contribute to CRC screening nonadherence
disproportionately for African-American and other minority communities. Recognizing this, in 2011, Penn
Medicine created a navigation program to increase access to screening colonoscopies for patients in
underserved areas of West, South, and Southwest Philadelphia by providing services that reduce barriers to
cancer screening, including transportation assistance and detailed instructions on bowel prep. Despite initial
success in increasing colonoscopies, a key challenge in scaling this navigation program is identifying patient
populations at increased risk of CRC, who may benefit most from timely navigation. Automated machine
learning (ML) algorithms based on routine electronic health record (EHR) data accurately estimate a patient’s
relative risk of CRC. High-risk individuals may be particularly motivated to comply with disease screening
recommendations and be targeted with an effective but resource-constrained navigator program.
The overarching goals of this Administrative Supplement is to support the Abramson Cancer Center (ACC)
mission to increase colorectal cancer (CRC) screening completion among high-risk individuals living in a
persistent poverty county by designing, conducting, disseminating and evaluating an electronic health record-
based automated identification program to target effective, culturally-sensitive CRC screening navigation to
individuals who have not completed an ordered colonoscopy or fecal immunochemical test (FIT). Specifically,
the goals of this supplement are to: 1) Adapt a previously validated EHR-based machine learning algorithm to
predict CRC detection by retraining the model using data from patients seen in primary care clinics serving zip
codes with a high proportion of racial and ethnic minorities living in Philadelphia County, a persistent poverty
county; and 2) Implement and evaluate the feasibility and effectiveness of an algorithm-based CRC navigation
program to increase colorectal cancer screening among 344 patients seen at one of 7 primary care practices
within Philadelphia county who are at high risk of CRC, have uncompleted colonoscopies. Together, these
projects aim to increase evidence-based screening in order to reduce the burden of CRC among high-risk
individuals living in a persistent poverty county by utilizing evidence-based, targeted, culturally-sensitive CRC
screening navigation that in part addresses social factors that prevent colorectal cancer screening.
项目概要/摘要
结直肠癌是第四大常见癌症,也是第二大癌症死亡原因
美国费城县的 CRC 发病率持续偏高。
区域——比基于指南的结肠镜检查或粪便筛查 CRC 的全国平均水平高出近 25%。
尽管免疫组织化学 (FIT) 已被证明具有一定的益处,但仍可降低 CRC 相关死亡率。
费城县的结肠镜检查、结直肠癌筛查完成率仍仅为 50% 左右,并且
居住在费城县的非裔美国人的死亡率始终低于白人 10-15%。
高度贫困等健康问题社会决定因素导致不遵守CRC筛查
2011 年,宾夕法尼亚大学认识到这一点,对非裔美国人和其他少数族裔群体的影响不成比例。
医学界创建了一个导航程序,以增加患者接受结肠镜检查的机会
通过提供减少障碍的服务,为费城西部、南部和西南部服务欠缺的地区提供服务
癌症筛查,包括交通援助和肠道准备的详细说明(尽管最初)。
成功增加结肠镜检查,扩大该导航计划的一个关键挑战是识别患者
CRC 风险较高的人群可能会从及时的自动化导航中受益最多。
基于常规电子健康记录 (EHR) 数据的学习 (ML) 算法可准确估计患者的健康状况
CRC 的相对风险可能特别有动力遵守疾病筛查。
建议并以有效但资源有限的导航计划为目标。
本行政补充文件的总体目标是支持艾布拉姆森癌症中心 (ACC)
使命是提高居住在高危人群中的结直肠癌 (CRC) 筛查完成率
通过设计、实施、传播和评估电子健康记录来帮助持续贫困县
基于自动识别程序的目标是有效性、文化敏感的 CRC 筛查导航
尚未完成预约的结肠镜检查或粪便免疫化学测试 (FIT) 的个人。
本补充的目标是: 1) 采用先前经过验证的基于 EHR 的机器学习算法来
通过使用在提供 zip 服务的初级保健诊所就诊的患者的数据重新训练模型来预测 CRC 检测
居住在费城县的少数族裔比例很高,长期贫困
县;以及 2) 实施并评估基于算法的 CRC 导航的可行性和有效性
一项旨在加强对 7 个初级保健机构之一就诊的 344 名患者进行结直肠癌筛查的计划
费城县内患有 CRC 高风险的人未完成结肠镜检查。
项目旨在加强循证筛查,以减轻高危人群的结直肠癌负担
利用循证、有针对性、文化敏感的《儿童权利公约》帮助生活在持续贫困县的个人
筛查导航部分解决了阻碍结直肠癌筛查的社会因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT H VONDERHEIDE其他文献
ROBERT H VONDERHEIDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT H VONDERHEIDE', 18)}}的其他基金
Immunotherapy and Tumor Microenvironment in HIV/AIDS Cancer Patients
HIV/艾滋病癌症患者的免疫治疗和肿瘤微环境
- 批准号:
10249752 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
non-AIDS defining cancers (NADCs) among aging HIV+ individuals
老年艾滋病毒感染者中的非艾滋病定义癌症(NADC)
- 批准号:
10249743 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Project 1: Clinical and immune impact of radiation and dual checkpoint blockade in patients
项目 1:辐射和双重检查点封锁对患者的临床和免疫影响
- 批准号:
10005190 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Project 1: Clinical and immune impact of radiation and dual checkpoint blockade in patients
项目 1:辐射和双重检查点封锁对患者的临床和免疫影响
- 批准号:
10360423 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
相似海外基金
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
- 批准号:
10834339 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Addressing health disparities by providing evidence-based treatment in the Black Church
通过在黑人教会提供循证治疗来解决健康差异
- 批准号:
10721580 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Trends of disparities in breast cancer progression and health care considering multilevel risk factors
考虑多层次危险因素的乳腺癌进展和医疗保健差异趋势
- 批准号:
10835483 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别: