Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
基本信息
- 批准号:10398909
- 负责人:
- 金额:$ 34.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBackBindingBinding SitesBiochemicalBiological ModelsC-terminalCRISPR/Cas technologyCell-Free SystemCellsChromosomal translocationChromosome PairingClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADNA BindingDNA DamageDNA Double Strand BreakDNA-PKcsDataDiffuseDiseaseDistalDouble Strand Break RepairEnzymesExcisionFailureFundingG22P1 geneGenesHumanIndividualLIG4 geneLeadLigationMalignant NeoplasmsMicroscopyMolecularMutagenesisMutationNonhomologous DNA End JoiningOutcomePathway interactionsPhosphotransferasesPhysiologicalPolymeraseProtein KinaseProteinsProteomeReactionRegulationRoleSourceSynapsesTailTimeWorkXRCC4 geneXRCC5 geneXenopuscancer therapydisease-causing mutationeggimaging approachinsightintermolecular interactionmolecular imagingnucleasepreventrecruitrepairedsingle moleculetherapeutic targettumorigenesisunpublished works
项目摘要
Project Summary
In this proposal we will apply biochemical and single-molecule approaches to understand the mechanism of
non-homologous end joining (NHEJ), the primary DNA double strand break (DSB) repair pathway in human
cells. During NHEJ, core factors, end processing factors and other accessory factors tether DNA ends together
and ultimately ligate them. While the biochemical activities of these individual factors are known to varying
extents, it remains poorly understood how these factors assemble into a synaptic complex and how their
various enzymatic activities are coordinated. To that end, we will apply single-molecule imaging
approaches in Xenopus egg extract to directly follow NHEJ complex formation and end synapsis in
real time during a physiological repair reaction. Completion of the specific aims below will provide an
increased mechanistic understanding of NHEJ, which will aid efforts to therapeutically target NHEJ and to
modulate repair outcomes during CRISPR-Cas gene editing.
Aim 1: How does the synaptic complex assemble and evolve during NHEJ?
Upon DSB formation it is critical that DNA ends are rapidly synapsed so as to prevent the ends from diffusing
apart and joining with the wrong partner. We have shown that paired ends pass through two distinct synaptic
states during repair. Initially ends are held in a relatively unstable long-range synaptic complex before
transitioning to a stable short-range synaptic complex in which the ends are poised to be ligated. In this aim we
will determine the unique sets of intermolecular interactions that characterize the synaptic complexes and
describe how these interactions evolve during repair. In particular, we will elucidate how the core NHEJ factors
XLF, XRCC4 and LIG4 contribute to end synapsis and determine how accessory factors facilitate assembly of
the synaptic complexes.
Aim 2: How do end processing factors gain access to DNA ends?
To minimize aberrant end processing and resection, DNA ends are rapidly bound by Ku and other factors. In
the prior funding period, we showed that even NHEJ-associated end processing is restricted until formation of
the ligation-competent short-range synaptic complex. This regulation prioritizes ligation over error-prone end
processing. In this aim we will elucidate the molecular steps that enable end deprotection and allow for end
processing. Furthermore, we will determine how Ku is remodeled on DNA ends during repair and examine the
consequences on NHEJ by blocking this remodeling. Next, we will determine how different processing factors
compete for DNA ends after they become accessible. Finally, we will apply our mechanistic insight into the
regulation of end processing to decrease the fidelity of repair of CRISPR-Cas9 induced breaks in cells.
项目概要
在本提案中,我们将应用生化和单分子方法来了解
非同源末端连接(NHEJ),人类主要的DNA双链断裂(DSB)修复途径
细胞。在 NHEJ 过程中,核心因子、末端加工因子和其他辅助因子将 DNA 末端连接在一起
并最终将它们连接起来。虽然已知这些个体因素的生化活性各不相同
在某种程度上,人们对这些因素如何组装成突触复合体以及它们如何发挥作用仍然知之甚少。
各种酶的活动是协调的。为此,我们将应用单分子成像
爪蟾卵提取物中的方法直接跟踪 NHEJ 复合体的形成和末端突触
生理修复反应期间的实时。完成以下具体目标将提供
增加对 NHEJ 机制的了解,这将有助于以 NHEJ 为治疗目标并
在 CRISPR-Cas 基因编辑过程中调节修复结果。
目标 1:NHEJ 期间突触复合体如何组装和进化?
DSB 形成后,DNA 末端快速突触以防止末端扩散至关重要
分开并与错误的伙伴结合。我们已经证明,成对的末端穿过两个不同的突触
修复期间的状态。最初末端被保持在相对不稳定的长程突触复合体中,然后
转变为稳定的短程突触复合体,其中末端准备连接。为了这个目标我们
将确定表征突触复合体的独特分子间相互作用集
描述这些相互作用在修复过程中如何演变。特别是,我们将阐明核心 NHEJ 因素如何
XLF、XRCC4 和 LIG4 有助于末端突触并确定辅助因子如何促进突触的组装
突触复合体。
目标 2:末端加工因子如何接触 DNA 末端?
为了最大限度地减少异常末端加工和切除,DNA 末端通过 Ku 和其他因素快速结合。在
在之前的资助期间,我们表明即使是 NHEJ 相关的最终处理也受到限制,直到形成
有连接能力的短程突触复合体。该规定优先考虑连接而不是容易出错的末端
加工。为此,我们将阐明实现末端脱保护并允许末端终止的分子步骤。
加工。此外,我们将确定修复期间 Ku 在 DNA 末端如何重塑,并检查
通过阻止这种重塑对 NHEJ 产生影响。接下来,我们将确定不同的处理因素如何
当 DNA 末端变得可接近时,它们会竞争它们。最后,我们将把我们的机械洞察力应用到
调节末端加工以降低 CRISPR-Cas9 诱导的细胞断裂修复的保真度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph J. Loparo其他文献
Joseph J. Loparo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph J. Loparo', 18)}}的其他基金
Molecular mechanisms of pathway choice in DNA double strand break repair
DNA双链断裂修复途径选择的分子机制
- 批准号:
10646302 - 财政年份:2022
- 资助金额:
$ 34.92万 - 项目类别:
Validating a potential interaction between error-prone polymerases and SSB as a therapeutic target for Mycobacterium tuberculosis
验证易错聚合酶和 SSB 之间潜在的相互作用作为结核分枝杆菌的治疗靶点
- 批准号:
10364697 - 财政年份:2021
- 资助金额:
$ 34.92万 - 项目类别:
Validating a potential interaction between error-prone polymerases and SSB as a therapeutic target for Mycobacterium tuberculosis
验证易错聚合酶和 SSB 之间潜在的相互作用作为结核分枝杆菌的治疗靶点
- 批准号:
10189804 - 财政年份:2021
- 资助金额:
$ 34.92万 - 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
- 批准号:
10384889 - 财政年份:2015
- 资助金额:
$ 34.92万 - 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
- 批准号:
10164800 - 财政年份:2015
- 资助金额:
$ 34.92万 - 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
- 批准号:
9885659 - 财政年份:2015
- 资助金额:
$ 34.92万 - 项目类别:
Regulation of translesion synthesis by the bacterial replisome
细菌复制体对跨损伤合成的调节
- 批准号:
10543767 - 财政年份:2015
- 资助金额:
$ 34.92万 - 项目类别:
Regulation of translesion synthesis by the bacterial replisome
细菌复制体对跨损伤合成的调节
- 批准号:
10321952 - 财政年份:2015
- 资助金额:
$ 34.92万 - 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
- 批准号:
8939212 - 财政年份:2015
- 资助金额:
$ 34.92万 - 项目类别:
Regulation of translesion synthesis by the bacterial replisome
细菌复制体对跨损伤合成的调节
- 批准号:
9064813 - 财政年份:2015
- 资助金额:
$ 34.92万 - 项目类别:
相似国自然基金
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
- 批准号:U21B2054
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
- 批准号:61773006
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
- 批准号:41571277
- 批准年份:2015
- 资助金额:74.0 万元
- 项目类别:面上项目
农户异质性、碳汇生产激励与后退耕时代生态补偿机制研究——以黄土高原退耕区为例
- 批准号:71403214
- 批准年份:2014
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a rapid screening test for the detection of dihydroanatoxin-a
开发检测二氢虾毒素-a 的快速筛选试验
- 批准号:
10545266 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
- 批准号:
10820331 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
- 批准号:
10679154 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Therapeutic targeting of master regulators in non-canonical AR driven advanced lethal prostate cancers
非经典 AR 驱动的晚期致命性前列腺癌中主调节因子的治疗靶向
- 批准号:
10737204 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别:
Affinity Gradient-Based Transport of HIV Capsid Cores through the Nuclear Pore Complex
基于亲和梯度的 HIV 衣壳核心通过核孔复合体的运输
- 批准号:
10700524 - 财政年份:2023
- 资助金额:
$ 34.92万 - 项目类别: