Personalized Predictions for Glaucoma Progression Using Artificial Intelligence for Electronic Health Records
使用电子健康记录人工智能对青光眼进展进行个性化预测
基本信息
- 批准号:10400077
- 负责人:
- 金额:$ 22.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdherenceAdvisory CommitteesAffectAlgorithmsAreaArtificial IntelligenceBlindnessCalibrationCharacteristicsClinicClinicalClinical DataCodeCommunitiesComplexComputersDataData SourcesDatabasesDevelopmentDiseaseDocumentationElectronic Health RecordEnsureEvaluationFutureGlaucomaGoalsHealthImageIndividualInformaticsInterventionMeasurementMedicineMentorshipMethodsMissionModelingNamesNatural Language ProcessingOperative Surgical ProceduresOphthalmic examination and evaluationOphthalmologyOutcomePatient CarePatientsPatternPerformancePersonsPharmaceutical PreparationsPhenotypePhysiciansPhysiologic Intraocular PressureProcessPublic HealthReadabilityRecording of previous eventsRegistriesResearchResearch PersonnelScientistStructureTechniquesTechnologyTestingTextTranslatingTreatment outcomeVariantVertebral columnVeterans Health AdministrationVisionWorkartificial intelligence algorithmbasebiomedical informaticscareerclinical data warehouseclinically relevantcohortdata sharingdemographicsevidence basehigh riskimprovedindividualized medicineinnovationinsightlarge scale datamachine learning modelmachine learning predictionmedication complianceoptimal treatmentspersonalized medicinepersonalized predictionsprecision medicineprediction algorithmpredictive modelingpreventprospectivestructured datasuccesssupport toolstool
项目摘要
Project Summary/Abstract: Glaucoma is the leading cause of irreversible blindness, affecting over 60 million
people worldwide. Glaucoma patients vary widely in their presentation, with some retaining long-term disease
stability, and others progressing quickly to vision loss. If glaucoma patients at highest risk of progression could
be identified early, clinicians could better personalize their treatment approaches. Many clinical factors that
affect glaucoma progression, such as intraocular pressure, treatment history, and medication adherence, are
documented within the free-text notes of the electronic health records (EHR) and are not in large-scale
administrative claims databases. Recent advances in artificial intelligence (AI) and natural language
processing (NLP) have enabled the integration of the rich and complex EHR data into highly accurate
predictive algorithms for health outcomes in medicine and surgery. We hypothesize that we can extend these
AI and NLP techniques to build predictive algorithms for glaucoma progression that outperform traditional
models reliant on only administrative features. The goal of this project is to build and evaluate predictive
algorithms for glaucoma progression using large-scale EHR data, while developing Dr Wang's
expertise in AI and NLP, advancing her career as an independent clinician scientist. Aim 1 focuses on
using the structured clinical data within the EHR, which are numeric or coded and readily machine-readable, to
build baseline machine learning models predicting glaucoma progression requiring surgery. Aim 2 focuses on
using and augmenting clinical named entity recognition tools to integrate information from EHR free text into AI
models predicting glaucoma progression to surgery. Aim 3 focuses on understanding, explaining, and
evaluating the performance of AI algorithms in a real-world prospective setting, by evaluating their performance
on key subpopulations, their reliance on key features, and investigating potential areas of bias in a new cohort
of glaucoma patients. This proposal is innovative in developing AI-based predictive algorithms for
glaucoma progression using numeric and textual clinical data uniquely available in the EHR. The tools
and methods Dr Wang will build and evaluate will substantially impact the ophthalmology field by enabling
evidence-based tailoring of treatment approaches to patients' unique clinical characteristics, a step towards
precision medicine. Furthermore, the careful evaluation of AI predictive algorithms on a new cohort of patients
will provide insights into their performance on key subpopulations and reliance on key features, which is critical
to advancing our understanding of possible limitations of deploying AI in the clinical workflow. Dr. Wang's
career and research will advance under the primary mentorship of Dr. Tina Hernandez-Boussard, a national
leader in informatics and expert in using NLP on EHR to improve patient care. Her outstanding Advisory
Committee, including clinician-investigators Drs. Pershing, Stein, Chang, and Goldberg, will ensure Dr. Wang's
success in becoming an independent clinician-investigator integrating ophthalmology and informatics.
项目摘要/摘要:青光眼是导致不可逆失明的主要原因,影响超过 6000 万人
世界各地的人们。青光眼患者的表现差异很大,有些患者仍患有长期疾病
稳定,而其他人则迅速进展为视力丧失。如果进展风险最高的青光眼患者能够
及早发现,临床医生可以更好地个性化他们的治疗方法。许多临床因素
影响青光眼进展的因素包括眼压、治疗史和药物依从性
记录在电子健康记录 (EHR) 的自由文本注释中,并且规模不大
行政索赔数据库。人工智能 (AI) 和自然语言的最新进展
处理(NLP)使丰富而复杂的 EHR 数据集成为高度准确的
医学和外科健康结果的预测算法。我们假设我们可以扩展这些
AI 和 NLP 技术可构建优于传统青光眼进展的预测算法
仅依赖于管理功能的模型。该项目的目标是构建和评估预测
使用大规模 EHR 数据进行青光眼进展的算法,同时开发王博士的
人工智能和自然语言处理方面的专业知识,推动了她作为独立临床科学家的职业生涯。目标 1 侧重于
使用 EHR 中的结构化临床数据(这些数据是数字或编码且易于机器读取)
建立基线机器学习模型来预测需要手术的青光眼进展。目标 2 重点关注
使用和增强临床命名实体识别工具将 EHR 自由文本中的信息集成到 AI 中
预测青光眼进展至手术的模型。目标 3 侧重于理解、解释和
通过评估人工智能算法在现实世界的前瞻性环境中的性能
关于关键亚群、他们对关键特征的依赖,并调查新群体中潜在的偏见领域
青光眼患者。该提案在开发基于人工智能的预测算法方面具有创新性
使用 EHR 中唯一可用的数字和文本临床数据来确定青光眼进展。工具
王博士将建立和评估的方法将对眼科领域产生重大影响
根据患者独特的临床特征制定基于证据的治疗方法,迈出了一步
精准医疗。此外,对新一批患者的人工智能预测算法进行了仔细评估
将深入了解他们在关键亚群上的表现以及对关键特征的依赖,这一点至关重要
加深我们对在临床工作流程中部署人工智能可能存在的局限性的理解。王医生的
职业和研究将在蒂娜·埃尔南德斯·布萨尔博士(Tina Hernandez-Boussard)的主要指导下取得进展,她是一位国家
信息学领域的领导者和在 EHR 上使用 NLP 来改善患者护理的专家。她出色的咨询
委员会,包括临床医生研究员 Drs。潘兴、斯坦因、张和戈德堡将确保王博士的
成功成为一名整合眼科和信息学的独立临床医生-研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophia Ying Wang其他文献
Glaucoma Surgery Outcome Prediction Using Progress Notes: A Comparative Study
使用进展记录预测青光眼手术结果:一项比较研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Babu;Samuel Barry;Sophia Ying Wang - 通讯作者:
Sophia Ying Wang
Sophia Ying Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophia Ying Wang', 18)}}的其他基金
Personalized Predictions for Glaucoma Progression Using Artificial Intelligence for Electronic Health Records
使用电子健康记录人工智能对青光眼进展进行个性化预测
- 批准号:
10191911 - 财政年份:2021
- 资助金额:
$ 22.92万 - 项目类别:
Personalized Predictions for Glaucoma Progression Using Artificial Intelligence for Electronic Health Records
使用电子健康记录人工智能对青光眼进展进行个性化预测
- 批准号:
10191911 - 财政年份:2021
- 资助金额:
$ 22.92万 - 项目类别:
Personalized Predictions for Glaucoma Progression Using Artificial Intelligence for Electronic Health Records
使用电子健康记录人工智能对青光眼进展进行个性化预测
- 批准号:
10576918 - 财政年份:2021
- 资助金额:
$ 22.92万 - 项目类别:
相似海外基金
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:
10643145 - 财政年份:2023
- 资助金额:
$ 22.92万 - 项目类别:
MIRHIQL Resource Center for Improving Quality of Life with Chronic Pain (MRC)
MIRHIQL 改善慢性疼痛生活质量资源中心 (MRC)
- 批准号:
10705887 - 财政年份:2023
- 资助金额:
$ 22.92万 - 项目类别:
Baylor College of Medicine Site Consortium - Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) Operations and Collaborations Center (UM2 Clinical Trial Optional)
贝勒医学院站点联盟 - HIV/艾滋病干预青少年医学试验网络 (ATN) 运营和合作中心(UM2 临床试验可选)
- 批准号:
10709602 - 财政年份:2022
- 资助金额:
$ 22.92万 - 项目类别:
Peripartum Depression Prevention: Algorithmic Identification and Digital Solutions
围产期抑郁症预防:算法识别和数字解决方案
- 批准号:
10523267 - 财政年份:2022
- 资助金额:
$ 22.92万 - 项目类别:
Peripartum Depression Prevention: Algorithmic Identification and Digital Solutions
围产期抑郁症预防:算法识别和数字解决方案
- 批准号:
10523267 - 财政年份:2022
- 资助金额:
$ 22.92万 - 项目类别: