Commercializing the μSIM: A Modular Platform for the Development and Analysis of Barrier Tissue Models

商业化μSIM:用于屏障组织模型开发和分析的模块化平台

基本信息

  • 批准号:
    10385120
  • 负责人:
  • 金额:
    $ 89.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-06 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

Abstract This project will commercialize a cell culture platform featuring SiMPore's ultrathin silicon- based membrane technology to enable advanced research on tissue barriers. In vitro models of tissue barriers such as the gut, lung, and vasculature are important for understanding the basis of disease and for assessing the ability of drug formulations to reach target tissues. Despite the growing use of sophisticated cell culture platforms (e.g., 3D cell culture, microphysiological systems, and tissue chips), the simplest and most popular tools for the in vitro study of barrier tissues remains the Corning Transwell™ and its competitors (collectively referred to herein as “Transwells™”). These products have a suspended ~ 10 µm thick polymer membrane creating apical and basal compartments which separate mono- or co-cultures grown on the membranes. Despite their popularity, Transwells® do not support high resolution microscopy nor provide the fluid flow needed to properly study vascular barriers and immune cell trafficking. SiMPore's membranes will be commercialized as cell culture products that overcome limitations of Transwells®, while retaining their easy to use format and offering features found in more sophisticated tissue chips. Our Phase I project successfully translated the laborious hand-made devices used in the laboratory of Professor James McGrath (University of Rochester) to a scalable fabrication workflow at SiMPore. Using a modular design, we developed an open-well Transwell-style culture unit that incorporates SiMPore's membranes, which further converts to a flow cell with the addition of a plug-and-play flow module. Devices were distributed to nine collaborating laboratories, all of whom reported success with the platform. SiMPore also successfully translated the dual-scale micro/nanoporous membranes developed by the McGrath laboratory to wafer-scale manufacturing. Our Phase II project will create commercially viable versions of Phase I prototypes to be marketed under the CytoVu™ brand. Aim 1 will increase membrane manufacturing capacity by relieving production bottlenecks and integrating automation. Aim 2 focuses on automating CytoVu™ device assembly. Aim 3 will test the manufactured devices in a network of collaborating laboratories while developing accessories that make the platform increasingly versatile and easy to use. This project will establish scalable manufacturing capacity at SiMPore for the CytoVu™ and its accessories, and also validate CytoVu™ products as competitive alternatives to incumbent products for the in vitro study of barrier tissues.
抽象的 该项目将使采用 SiMPore 超薄硅的细胞培养平台商业化 基于膜技术的组织屏障体外模型的高级研究。 肠道、肺和脉管系统等组织是理解基础的重要障碍 尽管存在疾病并评估药物制剂到达靶组织的能力。 越来越多地使用复杂的细胞培养平台(例如 3D 细胞培养、微生理学 系统和组织芯片),是体外屏障研究最简单和最流行的工具 组织仍然是 Corning Transwell™ 及其竞争对手(本文统称为 “Transwells™”)。这些产品具有约 10 µm 厚的悬浮聚合物膜。 顶端和基底隔室将生长在单一培养物或共培养物上的分开 尽管 Transwells® 很受欢迎,但它不支持高分辨率显微镜。 也不提供正确研究血管屏障和免疫细胞所需的液体流动 SiMPore 的膜将作为细胞培养产品进行商业化。 克服 Transwells® 的局限性,同时保留其易于使用的格式和产品 更复杂的组织芯片中发现的特征。 我们的一期项目成功地将传统工艺中使用的费力的手工设备转化为 James McGrath 教授(罗切斯特大学)实验室的可扩展制造 SiMPore 的工作流程采用模块化设计,我们开发了开放孔 Transwell 式。 包含 SiMPore 膜的培养单元,可进一步转换为流动池 添加了即插即用流程模块,并将设备分配给九个协作者。 实验室,所有这些实验室都报告了该平台的成功。 翻译了McGrath实验室开发的双尺度微/纳米孔膜 到晶圆级制造。 我们的第二阶段项目将创建第一阶段原型的商业可行版本 以 CytoVu™ 品牌销售的 Aim 1 将提高膜制造能力 缓解生产瓶颈并集成自动化 目标 2 侧重于自动化。 CytoVu™ 设备组装将在网络中测试制造的设备。 合作实验室,同时开发配件,使该平台越来越受欢迎 该项目将建立可扩展的制造能力,用途广泛且易于使用。 SiMPore 适用于 CytoVu™ 及其配件,并且还将 CytoVu™ 产品验证为 用于屏障组织体外研究的现有产品的竞争性替代品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Andrew Roussie其他文献

James Andrew Roussie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Andrew Roussie', 18)}}的其他基金

Commercializing the μSIM: A Modular Platform for the Development and Analysis of Barrier Tissue Models
商业化μSIM:用于屏障组织模型开发和分析的模块化平台
  • 批准号:
    10580031
  • 财政年份:
    2020
  • 资助金额:
    $ 89.37万
  • 项目类别:
Commercialization of Novel Silicon Microslit Filters for Microplastic Contamination Testing
用于微塑料污染测试的新型硅微缝过滤器的商业化
  • 批准号:
    10325256
  • 财政年份:
    2019
  • 资助金额:
    $ 89.37万
  • 项目类别:

相似国自然基金

胞裂蛋白Sep4介导菌丝顶端多极性生长调控灰葡萄孢侵染垫起始发育的机制
  • 批准号:
    32372489
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
富集于上皮细胞膜顶端转录本magu-2的主动运输机制及功能研究
  • 批准号:
    32300637
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同高度木本竹子因持续干旱而顶端枯死的生理机制
  • 批准号:
    32360258
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
马铃薯匍匐茎顶端弯钩发育过程中赤霉素介导蛋白质磷酸化调控机制
  • 批准号:
    32360091
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
  • 批准号:
    32300291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
  • 批准号:
    10766493
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
  • 批准号:
    10586534
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
Identification and characterization of novel functions for the Usher proteins in the inner ear
内耳 Usher 蛋白新功能的鉴定和表征
  • 批准号:
    10677948
  • 财政年份:
    2023
  • 资助金额:
    $ 89.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了