Data-Driven Automation of Patient-Specific Finite Element Modeling for TAVR
TAVR 患者特定有限元建模的数据驱动自动化
基本信息
- 批准号:10386122
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAnatomic ModelsAnatomic SurfaceAnatomyAortic Valve StenosisAutomationBiomechanicsBiomedical EngineeringCessation of lifeCharacteristicsClinicClinicalComplexComputational TechniqueConsumptionCoronary arteryDataDisciplineElementsEngineeringFellowshipFinite Element AnalysisGeometryGoalsHeart Valve DiseasesImageImage AnalysisJointsKnowledgeLabelLeadLeftLocationMachine LearningManualsMedicalMethodsModelingMotivationMyocardiumOperative Surgical ProceduresOutcomeOutputPatient imagingPatient-Focused OutcomesPatientsPrevalenceProcessProsthesisResearchResearch ProposalsShapesSpeedStructureSupervisionTechniquesThe SunTimeTrainingUniversitiesVariantVentricularWorkX-Ray Computed Tomographyaortic valveaortic valve replacementascending aortaautomated algorithmbasebiomedical imagingcalcificationclinical applicationdeep learningdeep learning algorithmdeep learning modeldesigndirect applicationhigh riskimprovedinterestmultitasknovelpopulation basedsimulationtreatment planningtreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Transcatheter Aortic Valve Replacement (TAVR) is an emerging treatment option for aortic stenosis, a
common heart valve disease that causes about 15,000 deaths per year in the U.S. TAVR has been steadily
gaining popularity since 2011, and is now performed over 70,000 times per year in the U.S. Finite element (FE)
methods have shown great potential for improving TAVR treatment planning by simulating the biomechanical
interactions between anatomical structures and deployed prosthetic devices. However, FE methods are
currently severely limited by the delineation process of patient-specific geometry, as manual delineation from
3D CT images is extremely time consuming and error-prone. Automated methods have been proposed, but
they have limited adaptability due to extensive assumptions about input and output characteristics. This is
especially problematic when extensions of patient-specific geometry are required to simulate various
complications of TAVR. To address these limitations, this proposal aims to develop fast, robust, and easily
adaptable deep learning algorithms for automating the delineation of patient-specific geometry from 3D CT
images. Aim 1 is to develop template deformation-based weakly supervised deep learning algorithms to
delineate TAVR-relevant anatomical structures such as the upper left ventricular myocardium, aortic valve,
coronary arteries, and ascending aorta. The template deformation strategy will establish mesh correspondence
between all predicted volumetric FE outputs, and weak supervision will allow for modeling of the complex
output geometry with minimally sufficient expert labeling. Aim 2 is to incorporate anatomically consistent
calcification to the final mesh outputs using multi-task deep learning. Based on prior medical knowledge
that calcification should always be in close proximity to anatomical surfaces, the main goal for Aim 2 is to
encourage effective sharing of imaging features from Aim 1 to also locate calcification. A novel loss for
anatomical consistency will also be developed as part of this aim. Upon successful completion of this proposal,
the final unified deep learning model will be able to use pre-operative 3D CT images to generate fully functional
patient-specific volumetric FE meshes for accurate and versatile TAVR simulations, at a rate of ~20ms per
image. This is a speed-up of several orders of magnitude compared to the current workflow, and thus will
significantly accelerate biomechanics studies and bring FE simulations closer to clinical use. This work will be
conducted at Yale University’s Biomedical Engineering department with guidance from Dr. James Duncan and
Dr. Wei Sun under the F31 fellowship. The training will include extensive research at the intersection of
biomedical image analysis, biomechanics, and machine learning, with emphasis on impactful clinical
applications.
项目概要/摘要
经导管主动脉瓣置换术(TAVR)是治疗主动脉瓣狭窄的一种新兴治疗选择,
常见的心脏瓣膜疾病在美国每年导致约 15,000 人死亡。 TAVR 一直在稳步发展
自 2011 年以来越来越受欢迎,目前在美国每年执行超过 70,000 次 有限元 (FE)
通过模拟生物力学,方法显示出改善 TAVR 治疗计划的巨大潜力
然而,有限元方法是解剖结构和部署的假肢装置之间的相互作用。
目前严重受到患者特定几何形状的描绘过程的限制,因为手动描绘
3D CT 图像非常耗时且容易出错,但人们已经提出了自动化方法。
由于对输入和输出特性的广泛假设,它们的适应性有限。
当需要扩展患者特定的几何形状来模拟各种情况时,尤其成问题
为了解决 TAVR 的并发症,该提案旨在快速、稳健且轻松地开发。
适应性强的深度学习算法,用于根据 3D CT 自动描绘患者特定的几何形状
目标 1 是开发基于模板变形的弱监督深度学习算法。
描绘 TAVR 相关解剖结构,如左上心室心肌、主动脉瓣、
冠状动脉和升主动脉模板变形策略将建立网格对应关系。
在所有预测的体积有限元输出之间,弱监督将允许对复杂的模型进行建模
目标 2 是整合解剖学上一致的
基于先前的医学知识,使用多任务深度学习钙化到最终的网格输出。
钙化应始终靠近解剖表面,目标 2 的主要目标是
鼓励有效共享目标 1 的成像特征,以定位钙化的新损失。
作为这一目标的一部分,解剖学的一致性也将得到发展。
最终的统一深度学习模型将能够使用术前 3D CT 图像来生成功能齐全的
患者特定的体积 FE 网格,可实现精确且多功能的 TAVR 模拟,速率约为 20ms/
与当前工作流程相比,这加快了几个数量级,因此将
显着加速生物力学研究并使有限元模拟更接近临床应用。
在 James Duncan 博士的指导下,在耶鲁大学生物医学工程系进行
孙伟博士获得 F31 奖学金,培训将包括在交叉领域进行广泛的研究。
生物医学图像分析、生物力学和机器学习,重点是有影响力的临床
应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Pak其他文献
Daniel Pak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Pak', 18)}}的其他基金
Data-Driven Automation of Patient-Specific Finite Element Modeling for TAVR
TAVR 患者特定有限元建模的数据驱动自动化
- 批准号:
10683708 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别: