Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
基本信息
- 批准号:10381602
- 负责人:
- 金额:$ 57.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:25-hydroxycholesterolAcuteAnimal ModelAnimalsAnti-Bacterial AgentsB-LymphocytesBacteriaBacterial InfectionsBiochemicalBiochemistryBiological ProcessBiophysicsBiosensorBlood CirculationCell membraneCell physiologyCell surfaceCellsChemicalsCholesterolCholesterol HomeostasisCommunicable DiseasesCultured CellsDevelopmentDistantDrug or chemical Tissue DistributionEndoplasmic ReticulumEpithelialEpithelial CellsFatty LiverFunctional disorderGeneticGleanGoalsGut MucosaHeart DiseasesHomeostasisHumanHuman BiologyImmuneImmune systemImmunityImmunologicsInfectionInflammasomeInflammatoryInflammatory ResponseIntracellular MembranesLipidsListeriaListeria monocytogenesListeriosisMammalian CellMammalsMediatingMembraneMembrane ProteinsMembrane Structure and FunctionMetabolic PathwayMolecularMolecular ProbesMonitorMovementMucosal Immune SystemMucous MembraneMusNatural ImmunityOrganismOutcomeParasitesPathogenesisPathogenicityPathway interactionsPharmacologyPhysiologicalPlayProcessProductionPropertyProtocols documentationRegulationRegulatory PathwayResolutionRoleShigellaShigella flexneriSignal PathwaySiteSurfaceSurface TensionSystemTechnologyTestingTherapeutic InterventionTimeTissuesToxinViralVirusWorkadaptive immune responsebasebiochemical toolscell growthcell motilitycell typecombatcytokineemerging pathogengut bacteriagut colonizationhuman pathogenin vivoinnovationinsightlipid metabolismlive cell imagingmacrophagemicrobialmouse modelnew technologynovel therapeuticspathogenpathogenic bacteriapathogenic microbepreventresponsesmall moleculetransmission process
项目摘要
Project Summary
The proposed project focuses on our recent discovery that immunological production of the oxysterol 25-
Hydroxycholesterol (25HC) potently inhibits the cellular dissemination of two globally important bacterial
pathogens, Listeria monocytogenes and Shigella flexneri. The anti-bacterial activity of 25HC is mediated
through mobilization of the accessible cholesterol pool from the plasma membrane (PM). Accessible
cholesterol is one of three pools into which PM cholesterol is sub-divided and this pool regulates cellular
signaling pathways that control lipid homeostasis and cell growth. By first characterizing the molecular
mechanism by which 25HC induces internalization of accessible cholesterol (Aim 1), these studies will reveal
how cholesterol can be rapidly transported in response to cytokine stimulation. Second, we will determine how
remodeling of PM cholesterol suppresses Listeria and Shigella from penetrating the cell-to-cell contact
junctions of the mucosal epithelium (Aim 2). This work will reveal how mammals enhance the barrier function
of mucosal surfaces through cholesterol metabolic pathways and will identify points of weakness in the
mucosal immune system that may be exploited by numerous microbial pathogens. Third, we will develop new
technologies for monitoring cholesterol dynamics in the living organism and use these technologies to
determine the tissues and cell types that mobilize accessible cholesterol in response to bacterial infection (Aim
3). Finally, the physiological significance of oxysterol-mediated immune pathways will be investigated in
mammalian model organisms using three complementary mouse models that disrupt 25HC activation,
production, and downstream activity (Aim 4). Insights gleaned from these studies, which range from basic
biochemistry to mouse models of infection, will explain how the human immune system has adapted
fundamental aspects of cholesterol metabolism to protect barrier cells from intracellular bacterial infection.
Developing new drugs that mimic the molecular activity of 25HC as determined in this proposal would be an
innovative approach to combat human infectious disease associated with pathogens that exploit host
cholesterol metabolism. These studies will also provide new insights into the pathogenic mechanisms of an
important infectious disease-causing agent and also into the biology of the human inflammatory response.
项目概要
拟议的项目重点关注我们最近的发现,即氧甾醇 25- 的免疫生产
羟基胆固醇 (25HC) 有效抑制两种全球重要细菌的细胞传播
病原体,单核细胞增生李斯特氏菌和福氏志贺氏菌。 25HC 的抗菌活性是介导的
通过调动质膜 (PM) 中可利用的胆固醇库。无障碍
胆固醇是 PM 胆固醇细分为的三个池之一,该池调节细胞
控制脂质稳态和细胞生长的信号通路。首先通过表征分子
25HC 诱导可利用胆固醇内化的机制(目标 1),这些研究将揭示
胆固醇如何响应细胞因子刺激而快速转运。其次,我们将确定如何
PM 胆固醇的重塑抑制李斯特菌和志贺氏菌穿透细胞间接触
粘膜上皮连接处(目标 2)。这项工作将揭示哺乳动物如何增强屏障功能
通过胆固醇代谢途径改变粘膜表面,并识别粘膜表面的弱点
粘膜免疫系统可能被许多微生物病原体利用。三、我们将开发新的
监测生物体内胆固醇动态的技术,并利用这些技术
确定动员可利用的胆固醇以应对细菌感染的组织和细胞类型(目标
3)。最后,将研究氧甾醇介导的免疫途径的生理意义
使用破坏 25HC 激活的三种互补小鼠模型的哺乳动物模型生物体,
生产和下游活动(目标 4)。从这些研究中收集的见解包括基础知识
生物化学到小鼠感染模型,将解释人类免疫系统如何适应
胆固醇代谢的基本方面,以保护屏障细胞免受细胞内细菌感染。
开发模仿本提案中确定的 25HC 分子活性的新药物将是一个
对抗与利用宿主的病原体相关的人类传染病的创新方法
胆固醇代谢。这些研究还将为疾病的致病机制提供新的见解。
重要的传染病病原体,也涉及人类炎症反应的生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neal Mathew Alto其他文献
Neal Mathew Alto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neal Mathew Alto', 18)}}的其他基金
Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
- 批准号:
10178988 - 财政年份:2021
- 资助金额:
$ 57.36万 - 项目类别:
Oxysterol Regulation of Microbial Pathogenesis
氧甾醇对微生物发病机制的调节
- 批准号:
10592354 - 财政年份:2021
- 资助金额:
$ 57.36万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10112827 - 财政年份:2020
- 资助金额:
$ 57.36万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10553188 - 财政年份:2020
- 资助金额:
$ 57.36万 - 项目类别:
Resolution of Inflammation by the SIX-family Transcription Factors
通过六家族转录因子解决炎症
- 批准号:
10328259 - 财政年份:2020
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8235694 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8603244 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8415960 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Bacterial Regulation of Eukaryotic Signaling Enzymes: Structure and Function
真核信号酶的细菌调节:结构和功能
- 批准号:
8788709 - 财政年份:2012
- 资助金额:
$ 57.36万 - 项目类别:
Type III effector regulation of host GTPase signaling
宿主 GTPase 信号转导的 III 型效应器调节
- 批准号:
8305575 - 财政年份:2009
- 资助金额:
$ 57.36万 - 项目类别:
相似国自然基金
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
建立脑内急性基因编辑的孤独症非人灵长类动物模型
- 批准号:
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:专项基金项目
树鼩异种移植模型的建立及免疫排斥机制的深入研究
- 批准号:81771721
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
染色体大片段缺失的急性髓性白血病动物模型的构建及分析
- 批准号:81770157
- 批准年份:2017
- 资助金额:84.0 万元
- 项目类别:面上项目
自发性高甘油三酯急性胰腺炎大鼠模型的建立及应用
- 批准号:81570584
- 批准年份:2015
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 57.36万 - 项目类别:
Impact of inflammatory lipids on Yersinia pestis infection
炎性脂质对鼠疫耶尔森菌感染的影响
- 批准号:
10722648 - 财政年份:2023
- 资助金额:
$ 57.36万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 57.36万 - 项目类别:
Molecular Mechanism of TET-mediated Gene Regulation
TET介导的基因调控的分子机制
- 批准号:
10714155 - 财政年份:2023
- 资助金额:
$ 57.36万 - 项目类别: