Mechanisms controlling the efficiency of hemostatic vitamin K-dependent protein activation
控制止血维生素 K 依赖性蛋白激活效率的机制
基本信息
- 批准号:10376350
- 负责人:
- 金额:$ 56.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Affinity ChromatographyAnticoagulantsApoptosisArtificial HeartBindingBiologicalBiological AssayBlood Coagulation FactorBlood coagulationBone DevelopmentCRISPR/Cas technologyCalcium BindingCell LineCellsComplexDataDietDimerizationDiseaseDoseDrug usageEmbryonic DevelopmentEpoxy CompoundsExcretory functionExtrahepaticFunctional disorderGrowthGrowth and Development functionHealthHeart ValvesHemorrhageHemostatic AgentsHemostatic functionHumanHydroquinonesInflammationIngestionMammalian CellMediatingMetabolismModelingMonitorMusMutationOxidoreductasePersonsPharmaceutical PreparationsPhysiologyPlatelet ActivationPlayProductionProteinsQuinone ReductasesQuinonesReactionRecyclingRegulationResistanceRoleSignal TransductionTestingTherapeuticTissuesUbiquitinVitamin KVitamin K 2WarfarinYeastscalcificationcarboxylatecarboxylationcell growthdietarydimergamma-glutamyl carboxylasein vivomutantmutant mouse modeloxidationparalogous geneprotein activationprotein complexprotein protein interactionvirtualvitamin K1 oxide
项目摘要
Project Summary
Dietary vitamin K is used in virtually all tissues to convert clusters of Glus to gamma-carboxylated Glus (Glas)
in vitamin K-dependent (VKD) proteins. Carboxylation activates VKD proteins by generating a calcium-binding
module required for their function. The first VKD proteins identified were coagulation factors, which also have
signaling roles that impact other physiologies (e.g. inflammation). Additional extrahepatic VKD proteins also
regulate calcification, growth control, apoptosis and signal transduction. Defining Gla formation is therefore
essential for understanding the impact of VKD proteins on human health and disease. A single gamma-
glutamyl carboxylase generates Gla by oxygenating vitamin K hydroquinone (KH2) to an epoxide (KO). KO is
then recycled by the vitamin K oxidoreductase (VKORC1) in two steps: from epoxide to vitamin K quinone, and
then quinone to hydroquinone. We showed that VKORC1 forms a dimer that is important in accomplishing
these two reactions. VKORC1 is the target of warfarin, a drug used by millions of people worldwide to control
blood clotting, for example with mechanical heart valves. We made the surprising discovery that warfarin
uncouples normal KO reduction, necessitating a second reductase during therapy to generate KH2 for VKD
protein carboxylation. The results are highly significant because extrahepatic VKD proteins may be poorly
carboxylated and dysfunctional if the second reductase is not ubiquitously expressed like VKORC1.
We showed that a VKORC1 dimer is important to KO recycling to KH2, and our recent preliminary data
suggest that VKORC1 and the carboxylase form a complex. We hypothesize that vitamin K sequestration by
these protein-protein interactions promotes efficient vitamin K recycling. Some VKORC1 mutations cause
warfarin resistance, i.e. the requirement for higher warfarin doses to manage hemostasis, and we hypothesize
that these mutations disrupt dimer integrity. Naturally occurring carboxylase mutations cause severe bleeding,
and some mutants appear to be defective in VKORC1-carboxylase interaction. The aims in this application will
define the protein-protein interactions that make VKD protein carboxylation so efficient and what role they play
in warfarin inhibition. Aim 1 will test whether vitamin K sequestration mediates VKORC1 reduction by
identifying VKORC1 dimerization domains and testing their function in CRISPR/Cas9 edited cell lines deleted
for endogenous VKORC1. Aim 2 will test the importance of VKORC1-carboxylase association in vitamin K
recycling by determining whether human carboxylase mutations that cause severe bleeding disrupt normal
vitamin K recycling, and by studying the efficiency of vitamin K recycling in a carboxylase mutant mouse model.
Aim 3 will test the hypothesis that a quinone reductase distinct from VKORC1 supports VKD carboxylation
during warfarin therapy by testing candidate reductases we have identified in cell line models. Successful
completion of these aims will reveal the mechanisms of efficient VKD protein carboxylation, and provide
important new information for warfarin therapy.
项目概要
膳食维生素 K 几乎用于所有组织,将 Glus 簇转化为 γ-羧化 Glus (Glas)
维生素 K 依赖性 (VKD) 蛋白质。羧化通过产生钙结合激活 VKD 蛋白
其功能所需的模块。第一个发现的 VKD 蛋白是凝血因子,它也具有
影响其他生理学(例如炎症)的信号传导作用。其他肝外 VKD 蛋白也
调节钙化、生长控制、细胞凋亡和信号转导。因此,Gla 形成的定义是
对于了解 VKD 蛋白对人类健康和疾病的影响至关重要。单个伽马-
谷氨酰羧化酶通过将维生素 K 对苯二酚 (KH2) 氧化成环氧化物 (KO) 来生成 Gla。 KO 是
然后由维生素 K 氧化还原酶 (VKORC1) 分两步回收:从环氧化物到维生素 K 醌,以及
然后将醌转化为对苯二酚。我们证明了 VKORC1 形成的二聚体对于完成
这两个反应。 VKORC1 是华法林的靶标,华法林是一种全世界数百万人用来控制病情的药物
血液凝固,例如机械心脏瓣膜。我们惊奇地发现华法林
解开正常的 KO 还原,在治疗期间需要第二种还原酶来生成 VKD 的 KH2
蛋白质羧化。结果非常重要,因为肝外 VKD 蛋白可能很难
如果第二种还原酶不像 VKORC1 那样普遍表达,则会发生羧化和功能障碍。
我们表明 VKORC1 二聚体对于 KO 回收至 KH2 很重要,我们最近的初步数据
表明 VKORC1 和羧化酶形成复合物。我们假设维生素 K 的螯合是通过
这些蛋白质与蛋白质之间的相互作用促进了维生素 K 的有效回收。一些 VKORC1 突变导致
华法林耐药,即需要更高的华法林剂量来控制止血,我们假设
这些突变破坏了二聚体的完整性。自然发生的羧化酶突变会导致严重出血,
一些突变体似乎在 VKORC1-羧化酶相互作用方面存在缺陷。本申请的目标是
定义使 VKD 蛋白质羧化如此有效的蛋白质-蛋白质相互作用以及它们发挥的作用
在华法林抑制作用中。目标 1 将测试维生素 K 隔离是否介导 VKORC1 还原
识别 VKORC1 二聚化结构域并测试其在 CRISPR/Cas9 编辑删除的细胞系中的功能
对于内源性 VKORC1。目标 2 将测试 VKORC1-羧化酶关联在维生素 K 中的重要性
通过确定导致严重出血的人类羧化酶突变是否会破坏正常情况来回收
维生素 K 回收,并通过研究羧化酶突变小鼠模型中维生素 K 回收的效率。
目标 3 将检验以下假设:不同于 VKORC1 的醌还原酶支持 VKD 羧化
在华法林治疗期间,通过测试我们在细胞系模型中确定的候选还原酶。成功的
完成这些目标将揭示有效 VKD 蛋白羧化的机制,并提供
华法林治疗的重要新信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHLEEN Lucile BERKNER其他文献
KATHLEEN Lucile BERKNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHLEEN Lucile BERKNER', 18)}}的其他基金
Mechanisms controlling the efficiency of hemostatic vitamin K-dependent protein activation
控制止血维生素 K 依赖性蛋白激活效率的机制
- 批准号:
10230831 - 财政年份:2021
- 资助金额:
$ 56.43万 - 项目类别:
Impact of gamma-glutamyl carboxylase processivity on vitamin K-dependent protein modification and function in human health and disease
γ-谷氨酰羧化酶持续合成能力对维生素 K 依赖性蛋白质修饰和人类健康和疾病功能的影响
- 批准号:
10315102 - 财政年份:2021
- 资助金额:
$ 56.43万 - 项目类别:
Mechanisms controlling the efficiency of hemostatic vitamin K-dependent protein activation
控制止血维生素 K 依赖性蛋白激活效率的机制
- 批准号:
10594567 - 财政年份:2021
- 资助金额:
$ 56.43万 - 项目类别:
Impact of gamma-glutamyl carboxylase processivity on vitamin K-dependent protein modification and function in human health and disease
γ-谷氨酰羧化酶持续合成能力对维生素 K 依赖性蛋白质修饰和人类健康和疾病功能的影响
- 批准号:
10627995 - 财政年份:2021
- 资助金额:
$ 56.43万 - 项目类别:
Impact of gamma-glutamyl carboxylase processivity on vitamin K-dependent protein modification and function in human health and disease
γ-谷氨酰羧化酶持续合成能力对维生素 K 依赖性蛋白质修饰和人类健康和疾病功能的影响
- 批准号:
10455606 - 财政年份:2021
- 资助金额:
$ 56.43万 - 项目类别:
Molecular, Structural & Clinical Aspects of Vitamin K-Dependent Proteins
分子、结构
- 批准号:
8199870 - 财政年份:2011
- 资助金额:
$ 56.43万 - 项目类别:
Vitamin K Oxidoreductase: function and physiology
维生素 K 氧化还原酶:功能和生理学
- 批准号:
8197407 - 财政年份:2007
- 资助金额:
$ 56.43万 - 项目类别:
Vitamin K Oxidoreductase: function and physiology
维生素 K 氧化还原酶:功能和生理学
- 批准号:
7369663 - 财政年份:2007
- 资助金额:
$ 56.43万 - 项目类别:
Vitamin K Oxidoreductase: Function and Physiology
维生素 K 氧化还原酶:功能和生理学
- 批准号:
8676994 - 财政年份:2007
- 资助金额:
$ 56.43万 - 项目类别:
Vitamin K Oxidoreductase: Function and Physiology
维生素 K 氧化还原酶:功能和生理学
- 批准号:
9244059 - 财政年份:2007
- 资助金额:
$ 56.43万 - 项目类别:
相似国自然基金
类血友病机制的凝胶微球抗凝剂的研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
凝血因子XI多肽抑制剂的开发及抗血栓作用研究
- 批准号:21708043
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
新型抗凝剂枸橼酸双乙酯代谢过程、抗凝机制与钙转运关系
- 批准号:30871164
- 批准年份:2008
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Endothelial Cytoprotective Signaling by Activated Protein C/Protease-activated Receptor-1
激活蛋白 C/蛋白酶激活受体 1 的内皮细胞保护信号传导
- 批准号:
10594367 - 财政年份:2023
- 资助金额:
$ 56.43万 - 项目类别:
Platelet-mediated mechanisms of placental and systemic hypercoagulability in preeclampsia
先兆子痫胎盘和全身高凝状态的血小板介导机制
- 批准号:
10686921 - 财政年份:2022
- 资助金额:
$ 56.43万 - 项目类别:
Platelet-mediated mechanisms of placental and systemic hypercoagulability in preeclampsia
先兆子痫胎盘和全身高凝状态的血小板介导机制
- 批准号:
10509032 - 财政年份:2022
- 资助金额:
$ 56.43万 - 项目类别:
Determinants of COVID19-induced venous thrombosis and targeted therapy assessed with bioengineered vein-chip
用生物工程静脉芯片评估新冠病毒引起的静脉血栓形成的决定因素和靶向治疗
- 批准号:
10617651 - 财政年份:2021
- 资助金额:
$ 56.43万 - 项目类别: