Detection of Disease Progression in Advanced Glaucoma
晚期青光眼疾病进展的检测
基本信息
- 批准号:10359152
- 负责人:
- 金额:$ 37.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAlgorithm DesignAlgorithmic SoftwareAxonBayesian AnalysisBayesian ModelingBlindnessClinicalComplexComputer softwareDataDecision MakingDetectionDeteriorationDevelopmentDiagnosticDiseaseDisease ProgressionEarly DiagnosisEnrollmentEthnic OriginEyeFloorFutureGenderGlaucomaGoalsImageJointsLeadLinear RegressionsMeasurementMeasuresMethodsModelingMonitorNoiseOptic DiskOptical Coherence TomographyPatientsPatternPerformancePositioning AttributeProbabilityQuality of lifeReproducibilityResidual stateRetinaRetinal Ganglion CellsRetinal maculaSeveritiesSeverity of illnessSignal TransductionSoftware DesignStructureStructure-Activity RelationshipTestingThickTimeVisionVisitVisualVisual Fieldsadvanced diseaseage relatedbasecentral visual fieldclinical applicationclinical encountercohortdisabilityexperiencefollow-upfunctional lossfunctional outcomeshigh riskimprovedinclusion criterialongitudinal analysismaculameetingsnonlinear regressionnovelpatient populationpredictive modelingprospectiverate of changeretinal nerve fiber layersoftware developmenttime usetool
项目摘要
A pressing unmet need in the field of glaucoma diagnostics is to find methods for objective detection of
disease worsening or prediction of visual field (VF) progression in eyes with advanced disease. Eyes with
advanced glaucoma are at high risk of losing the remaining vision and blindness. Retinal nerve fiber layer
(RNFL) and optic nerve head measures reach their measurement floor as glaucoma progresses beyond the
early stages. Hence, functional assessment of the central VF is currently the main tool for monitoring advanced
glaucoma. Our central hypothesis is that assessment of the macular retinal ganglion cell (RGC)/axonal
complex can lead to improved detection or prediction of disease progression since the last RGCs to disappear
in glaucoma reside in the central retina (the macula). We will test this hypothesis in a cohort of glaucoma
subjects just reaching 5 years of follow-up and validate our methods in separate cohorts of glaucoma and
normal subjects. Aim 1. Are macular thickness measures able to detect change earlier and with a stronger
signal compared to RNFL measures in advanced glaucoma? We will measure progression rates for global and
local macular and RNFL measures within a Bayesian hierarchical framework. We will compare progression
rates and the proportion of progressing eyes/regions/sectors for macular and RNFL measures to normal eyes
and account for differing scales, age-related decay, and treatment. Aim 2A. Can macular OCT thickness
changes confirm and predict changes in central VFs for advanced glaucoma? We will estimate
longitudinal/temporal structure-function relationships with Bayesian joint hierarchical longitudinal modeling of
macular OCT and central 10° VF measures. These models will determine whether there is a contemporaneous
or lagged deterioration of OCT and VF. We will assess the influence of baseline disease severity, treatment
and other covariates on these joint longitudinal models. We will also compare the joint macular/central VF
models to joint models of RNFL and 24° VFs and develop functional prediction models from 1 to 4 years
ahead. Aim 2B. To validate the performance of prediction models, we will initiate a second prospectively
enrolled cohort of patients meeting similar inclusion criteria and matched to the original cohort by age, gender,
ethnicity and baseline glaucoma severity. We will compare VF point predictions (e.g., one- or two-visit step
ahead) to the observed VF data. Aim 3. Develop software for combining macular structural and functional data
in real time as a clinical tool for detection or prediction of progression. It will provide clinicians with
structural/functional rates of change and structural ‘step’ changes from baseline, and the probability and
distribution of predicted functional changes The information provided by the application can be used during a
clinical encounter to make decisions regarding ongoing management of glaucoma. Widespread real-time use
of our software will result in significant improvements in disease monitoring and timely treatment of progressive
glaucoma through advanced stages and will help reduce visual disability from glaucoma.
青光眼诊断领域迫切需要满足的需求是寻找客观检测青光眼的方法
患有晚期疾病的眼睛的疾病恶化或视野(VF)进展的预测。
晚期青光眼患者丧失剩余视力和失明的风险很高。
(RNFL) 和视神经乳头测量随着青光眼的进展超出了测量范围
因此,中枢心室颤动的功能评估是目前监测晚期阶段的主要工具。
我们的中心假设是黄斑视网膜神经节细胞(RGC)/轴突的评估
自上次 RGC 消失以来,复合物可以改善疾病进展的检测或预测
在青光眼中,存在于视网膜中央(黄斑),我们将在一组青光眼患者中检验这一假设。
受试者刚刚进行了 5 年的随访,并在不同的青光眼队列中验证了我们的方法
目标 1. 黄斑厚度测量是否能够更早、更强地检测到变化。
与晚期青光眼的 RNFL 测量相比,我们将测量全球和晚期青光眼的进展率?
我们将在贝叶斯分层框架内比较局部黄斑和 RNFL 测量的进展情况。
黄斑和 RNFL 测量的进展眼睛/区域/部门与正常眼睛的比率和比例
并考虑不同的尺度、与年龄相关的衰退和治疗。目标 2A。可以黄斑 OCT 厚度
变化证实并预测晚期青光眼中央 VF 的变化?
纵向/时间结构-功能关系与贝叶斯联合分层纵向建模
黄斑 OCT 和中央 10° VF 测量。这些模型将确定是否存在同期
或 OCT 和 VF 的滞后恶化 我们将评估基线疾病严重程度、治疗的影响。
以及这些联合纵向模型的其他协变量我们还将比较联合黄斑/中央 VF。
模型到 RNFL 和 24° VF 的联合模型,并开发 1 至 4 年的功能预测模型
目标 2B。为了验证预测模型的性能,我们将启动第二个前瞻性模型。
纳入的患者队列符合相似的纳入标准,并按年龄、性别、年龄与原始队列相匹配。
我们将比较 VF 点预测(例如,一次或两次就诊步骤)。
目标 3. 开发用于结合黄斑结构和功能数据的软件。
实时作为检测或预测进展的临床工具。
结构/功能变化率和相对于基线的结构“阶梯”变化,以及概率和
预测功能变化的分布 应用程序提供的信息可以在
临床经验,以做出有关青光眼持续治疗的决策 广泛实时使用。
我们的软件将显着改善疾病监测和及时治疗进行性
青光眼进入晚期阶段,将有助于减少青光眼引起的视力障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kouros Nouri-Mahdavi其他文献
Kouros Nouri-Mahdavi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kouros Nouri-Mahdavi', 18)}}的其他基金
Detection of Disease Progression in Advanced Glaucoma
晚期青光眼疾病进展的检测
- 批准号:
10624322 - 财政年份:2020
- 资助金额:
$ 37.59万 - 项目类别:
Detection of Disease Progression in Advanced Glaucoma
晚期青光眼疾病进展的检测
- 批准号:
9888147 - 财政年份:2020
- 资助金额:
$ 37.59万 - 项目类别:
Detection of Glaucoma Progression with Macular OCT Imaging
利用黄斑 OCT 成像检测青光眼进展
- 批准号:
8353379 - 财政年份:2012
- 资助金额:
$ 37.59万 - 项目类别:
Detection of Glaucoma Progression with Macular OCT Imaging
利用黄斑 OCT 成像检测青光眼进展
- 批准号:
8529542 - 财政年份:2012
- 资助金额:
$ 37.59万 - 项目类别:
Detection of Glaucoma Progression with Macular OCT Imaging
利用黄斑 OCT 成像检测青光眼进展
- 批准号:
8866409 - 财政年份:2012
- 资助金额:
$ 37.59万 - 项目类别:
Detection of Glaucoma Progression with Macular OCT Imaging
利用黄斑 OCT 成像检测青光眼进展
- 批准号:
8675256 - 财政年份:2012
- 资助金额:
$ 37.59万 - 项目类别:
相似国自然基金
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Cognitively engaging walking exercise and neuromodulation to enhance brain function in older adults
认知性步行锻炼和神经调节可增强老年人的大脑功能
- 批准号:
10635832 - 财政年份:2023
- 资助金额:
$ 37.59万 - 项目类别:
The Gut Microbiome and Serum Metabolites as a Biological Mechanism Underlying Pain in Kidney Transplantation (Biome-KT)
肠道微生物组和血清代谢物作为肾移植疼痛的生物机制 (Biome-KT)
- 批准号:
10633444 - 财政年份:2023
- 资助金额:
$ 37.59万 - 项目类别:
A Smart Ring for Cuffless Blood Pressure to Reduce Health Disparities in People of Color
用于无袖血压测量的智能环,可减少有色人种的健康差异
- 批准号:
10720348 - 财政年份:2023
- 资助金额:
$ 37.59万 - 项目类别:
Bridging bench to bedside with aneurotechnology cross-development platform
通过神经技术交叉开发平台将工作台与床边桥接起来
- 批准号:
10640424 - 财政年份:2023
- 资助金额:
$ 37.59万 - 项目类别:
Data-Driven Discovery of Heterogeneous Treatment Effects of Statin Use on Dementia Risk
他汀类药物使用对痴呆风险的异质治疗效果的数据驱动发现
- 批准号:
10678219 - 财政年份:2023
- 资助金额:
$ 37.59万 - 项目类别: