Data-Driven Discovery of Heterogeneous Treatment Effects of Statin Use on Dementia Risk
他汀类药物使用对痴呆风险的异质治疗效果的数据驱动发现
基本信息
- 批准号:10678219
- 负责人:
- 金额:$ 4.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAgingAlgorithmsAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmericanAwardBehavioralBiologicalBiological MarkersCharacteristicsClinicalClinical TrialsCognitive agingConsensusDataData SetDementiaDiagnosisDiseaseEconomicsEffectivenessGeneticGoalsGrantHeterogeneityHyperlipidemiaImpaired cognitionIndividualInvestigationMachine LearningMentorshipMethodsMissionModificationNatureObservational StudyParticipantPharmaceutical PreparationsPoliciesPrevalencePreventionPrevention ResearchPrevention strategyProbabilityProspective cohortPsychometricsPublic HealthQualifyingRaceReproducibility of ResultsResearchResearch MethodologyResearch PersonnelResearch ProposalsResearch TrainingResourcesRisk ReductionSamplingSubgroupTestingTrainingTreesUnited Statesadvanced dementiaagedapolipoprotein E-4biobankcareercognitive functioncohortcomorbiditydementia riskdesigneffective therapyfollow-upforestimprovedinnovationinterestlipid metabolismmachine learning algorithmmachine learning methodnoveloptimal treatmentspatient subsetsprecision medicinepreventrecruitregression treessexskillssocialsociodemographicsstudy populationtreatment effect
项目摘要
PROJECT SUMMARY (ABSTRACT)
Alzheimer’s Disease and Related Dementias (ADRD) currently affects more than 4 million Americans and over
50 million individuals worldwide. The identification of prevention strategies for dementia is critical, particularly
due to the lack of effective treatments. In parallel, there is growing consensus that lipid metabolism is a major
contributor to ADRD and may be an important strategy for risk reduction and prevention. Antihyperlipidemic
agents (i.e., statins) are widely used, yet evidence on the relationship between antihyperlipidemic agents (i.e.,
statins) and ADRD has been largely inconclusive. One possible explanation for the mixed findings is
heterogeneity in study populations and their characteristics. For example, the effectiveness of statins is
evidenced to vary by age, ApoE4 status, and pre-existing disease status.34-36 Accordingly, there is a growing
need to identify the factors (i.e., effect modifiers) which influence heterogeneities in the effect of statins on
dementia. The objective of this study is to triangulate evidence on the identification and estimation of
heterogeneous treatment effects by using three causal machine learning methods, specifically the honest
causal forest/policy tree, doubly robust adaptive LASSO, and Bayesian Adaptive Regression Trees (BART), to
identify novel effect modifiers and optimal subgroups for the effect of statins on dementia. While traditional
parametric regression approaches are designed to test a priori hypotheses regarding effect modification, such
approaches are not suitable for yielding novel hypotheses. The causal machine learning methods described in
this proposal fill this gap; not only do such approaches help identify novel effect modifiers, but they can also
facilitate the subsequent identification of optimal treatment rules across those modifiers. In this study, I propose
to use a cohort of 307,719 individuals from the UK Biobank data who were at least 55 when they were initially
recruited from 2006 to 2010. The analytical sample will be large, allowing me to rigorously investigate
heterogeneous treatment effects across different subgroups. Specifically, in Aim 1, I propose to estimate the
real-world average treatment effect (ATE) of statins on ADRD across the entire sample. I will then, in Aim 2,
apply three causal machine learning algorithms to identify novel effect modifiers and corresponding optimal
subgroups for the effect of statin use on ADRD risk. Finally, in Aim 3, I will quantify the reduction in ADRD
cases that would result from implementing each of the optimal treatment rules generated under Aim 2 and
compare them to the reduction in ADRD cases observed under Aim 1. This F31 proposal application will
support my dissertation research, as well as my interest in gaining training in causal machine learning, as well
as substantive training in dementia, cognitive aging, and its psychometric methods. Under the guidance of my
mentorship team, I look forward to advancing dementia prevention research while also pursuing my goal of
becoming an independent investigator in research methods on cognitive aging.
项目概要(摘要)
阿尔茨海默病和相关痴呆症 (ADRD) 目前影响超过 400 万美国人及以上
确定全球 5000 万人的痴呆症预防策略至关重要。
与此同时,由于缺乏有效的治疗方法,人们越来越认识到脂质代谢是一个主要因素。
ADRD 的贡献者,可能是降低和预防风险的重要策略。
药物(即他汀类药物)被广泛使用,但降血脂药物(即,
他汀类药物)和 ADRD 在很大程度上尚无定论,对这一混合结果的一种可能解释是。
研究人群及其特征的异质性例如,他汀类药物的有效性是。
事实证明,其因年龄、ApoE4 状态和既往疾病状态而异。34-36 因此,越来越多的人
需要确定影响他汀类药物疗效异质性的因素(即效果调节剂)
本研究的目的是对痴呆症的识别和评估证据进行三角测量。
通过使用三种因果机器学习方法(特别是诚实的方法)来获得异质治疗效果
因果森林/策略树、双鲁棒自适应 LASSO 和贝叶斯自适应回归树 (BART),
确定他汀类药物对痴呆症的影响的新效应调节剂和最佳亚组。
参数回归方法旨在测试有关效果修改的先验假设,例如
方法不适合产生新颖的假设。
该提案填补了这一空白;这些方法不仅有助于识别新颖的效果调节剂,而且还可以
在这项研究中,我建议促进随后识别这些修饰符的最佳治疗规则。
使用来自英国生物银行数据的 307,719 名个体的队列,这些人最初年龄至少为 55 岁
从2006年到2010年招募的。分析样本很大,可以让我进行严格的调查
具体而言,在目标 1 中,我建议估计不同亚组的异质治疗效果。
然后,在目标 2 中,我将计算他汀类药物对整个样本中 ADRD 的真实平均治疗效果 (ATE)。
应用三种因果机器学习算法来识别新颖的效果调节剂和相应的最佳效果
最后,在目标 3 中,我将量化 ADRD 的降低程度。
实施目标 2 下生成的每条最佳治疗规则所产生的病例和
将它们与目标 1 下观察到的 ADRD 案例减少进行比较。此 F31 提案申请将
支持我的论文研究,以及我对获得因果机器学习培训的兴趣
作为痴呆症、认知衰老及其心理测量方法的实质性训练。
导师团队,我期待着推进痴呆症预防研究,同时也追求我的目标
成为认知衰老研究方法的独立研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neal Jawadekar其他文献
Neal Jawadekar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
A2E老化ARMS2/HTRA1型iPSC-RPE细胞的研究:个体化AMD发病机制初步探索
- 批准号:81400412
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 4.39万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别:
A National NHP Embryo Resource of Human Genetic Disease Models
国家NHP人类遗传病模型胚胎资源
- 批准号:
10556087 - 财政年份:2023
- 资助金额:
$ 4.39万 - 项目类别: