A novel mouse model to distinguish the specific physiological significance of RNAi and biophysical mechanisms of microRNA
区分RNAi特定生理意义和microRNA生物物理机制的新型小鼠模型
基本信息
- 批准号:10351415
- 负责人:
- 金额:$ 23.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAdultAgeAnimal ModelApoptosisArrhythmiaBindingBiologicalBiophysical ProcessBiophysicsCanesCardiac MyocytesCell ProliferationCellsColonCrossbreedingDefectDevelopmentDoxycyclineDuchenne muscular dystrophyEctopic ExpressionElectrophysiology (science)EventEvolutionGene ExpressionGenesGenetic TranscriptionGenitourinary systemHeartHeart AbnormalitiesHeart DiseasesHeart failureHomeostasisHourHumanHuman GenomeInvestigationIon ChannelKnock-in MouseKnock-outKnockout MiceLong-Term EffectsLungMalignant Epithelial CellMalignant NeoplasmsMetabolismMicroRNAsModelingMusMuscleMuscle CellsMuscular DystrophiesMyocardial dysfunctionNucleotidesOrganOrganogenesisPhenotypePhysiologicalPhysiologyPlayPrimary carcinoma of the liver cellsProteinsPumpRNA InterferenceRegulationRoleSingle Nucleotide PolymorphismSkeletal MuscleSymptomsTetanus Helper PeptideThyroid GlandTissuesTransgenic MiceTranslationsUntranslated RNAWeaningbiological adaptation to stressbody systemcancer typecardiogenesiscell growthhuman diseasein vivoinward rectifier potassium channelknock-downmRNA Transcript Degradationmature animalmouse genomemouse modelnovelnovel therapeutic interventionpostnatalprotein expressionsarcomatooltumorigenesis
项目摘要
Project Summary
MicroRNAs (miRs) are evolutionally conserved small non-coding RNA molecules and control most biological
events, including apoptosis, cell proliferation, metabolism, cell fate determination, organogenesis, development,
stress responses, and tumorigenesis. Classically, miRs are known to negatively regulate gene expression
through RNA interference (RNAi) mechanism. Recently, we revealed a novel biophysical action of miR1, which
is the most predominant miR in the heart and is downregulated in human heart failure. We discovered that
miR1directly binds to inward rectifier potassium channel Kir2.1, resulting in direct suppression of the IK1
current and leading to biophysical modulation of cardiomyocyte cellular electrophysiological functions. Our
studies suggest that miR1 modulates the development and homeostasis of tissues/organs through two
different mechanisms: the immediate effect (seconds to minutes) of newly-discovered biophysical modulation
and long-term effect (hours to days) of RNAi. With this important new finding, it now becomes essential to
understand how these two distinct miRs mechanisms of action coordinate to regulate the development and
homeostasis of our body. However, there is no valid model that can distinguish the specific physiology
significance of biophysical modulation versus RNAi mechanism. We found that an arrhythmia-associated
hSNP14A/G specifically defects the biophysical action while maintaining miR1’s RNAi function; therefore, we
propose to develop a unique transgenic mouse model that can separate the specific contribution coming from
the biophysical modulation and dissect the pure contribution of RNAi in maintain the homeostasis of multi
organs/systems. We will develop miR1-full-KO/muscle-specific inducible hSNP14A/G-knock-in mice, and we
hypothesize that an expression of hSNP14A/G in muscle cells could rescue the postnatal lethality of miR1-full-
KO mice. We will investigate if lacking biophysical function of hSNP14A/G induces any abnormal phenotypes
(Aim 1), such as arrhythmia, heart failure, and abnormal contractility of skeletal muscle, which will demonstrate
the specific role of miR1’s biophysical modulation in regulation of the homeostasis in vivo. We will also turn off
the expression of hSNP14A/G by administration of doxycycline and investigate the specific physiological
significance of miR1’s RNAi mechanism in the heart (Aim 2). This unique animal model will be very valuable to
investigate the critical role of miR1 in multiple organs/systems, including the heart, skeletal muscle, various
types of cancers. Understanding the specific contributions of miR’s biophysical modulation and RNAi in vivo
will expand the biological significance of miRs and guide us to develop new therapeutic approaches for human
diseases through targeting of miRs.
项目概要
MicroRNA (miR) 是进化上保守的小非编码 RNA 分子,控制着大多数生物
事件,包括细胞凋亡、细胞增殖、代谢、细胞命运决定、器官发生、发育、
众所周知,miR 会负向调节基因表达。
最近,我们揭示了 miR1 的一种新的生物物理作用。
是心脏中最重要的 miR,并且在人类心力衰竭中下调。
miR1直接结合内向整流钾通道Kir2.1,导致IK1的直接抑制
当前并导致心肌细胞细胞电生理功能的生物物理调节。
研究表明miR1通过两个途径调节组织/器官的发育和稳态
不同的机制:新发现的生物物理调节的即时效果(几秒到几分钟)
有了这一重要的新发现,现在就必须研究 RNAi 的长期影响(数小时至数天)。
了解这两种不同的 miR 作用机制如何协调来调节发育和
然而,没有有效的模型可以区分特定的生理学。
生物物理调节与 RNAi 机制的重要性我们发现与心律失常相关。
hSNP14A/G 在维持 miR1 的 RNAi 功能的同时,特异性地缺陷了生物物理作用;因此,我们
开发一种独特的转基因小鼠模型提案,可以将来自于的特定贡献分开
生物物理调节并剖析 RNAi 在维持多种体内稳态中的纯粹贡献
我们将开发 miR1-full-KO/肌肉特异性诱导型 hSNP14A/G 敲入小鼠,并且我们
研究发现,肌肉细胞中 hSNP14A/G 的表达可以挽救 miR1-full- 的产后致死性
我们将研究缺乏 hSNP14A/G 的生物物理功能是否会导致任何异常表型。
(目标1),例如心律失常、心力衰竭和骨骼肌收缩力异常,这将证明
我们还将关闭 miR1 的生物物理调节在体内稳态调节中的具体作用。
给予强力霉素后 hSNP14A/G 的表达并研究其具体生理学
miR1 的 RNAi 机制在心脏中的重要性(目标 2)对于这种独特的动物模型将非常有价值。
研究 miR1 在多个器官/系统中的关键作用,包括心脏、骨骼肌、各种
了解 miR 的生物物理调节和体内 RNAi 的具体贡献。
将扩大 miR 的生物学意义并指导我们为人类开发新的治疗方法
通过靶向 miR 来治疗疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jidong Fu其他文献
Jidong Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jidong Fu', 18)}}的其他基金
A novel mouse model to distinguish the specific physiological significance of RNAi and biophysical mechanisms of microRNA
区分RNAi特定生理意义和microRNA生物物理机制的新型小鼠模型
- 批准号:
10592248 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 23.63万 - 项目类别:
Understanding resistance mechanisms to protein arginine methyltransransferase Inhibitors in Lymphoma
了解淋巴瘤对蛋白精氨酸甲基转移酶抑制剂的耐药机制
- 批准号:
10668754 - 财政年份:2023
- 资助金额:
$ 23.63万 - 项目类别:
A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
- 批准号:
10730832 - 财政年份:2023
- 资助金额:
$ 23.63万 - 项目类别:
Role of m6A RNA modifications in AHR-mediated developmental toxicity
m6A RNA 修饰在 AHR 介导的发育毒性中的作用
- 批准号:
10647294 - 财政年份:2023
- 资助金额:
$ 23.63万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 23.63万 - 项目类别: