Project 1
项目1
基本信息
- 批准号:10349751
- 负责人:
- 金额:$ 20.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBig DataCharacteristicsChemical ExposureChemicalsClassificationCollaborationsCommerceComplexComputing MethodologiesCoupledDataData AnalysesDatabasesDefectDevelopmentDisastersEmergency SituationEnvironmental Engineering technologyEnvironmental ImpactEnvironmental MonitoringEnvironmental Risk FactorEnvironmental ScienceEvaluationEventExposure toFundingGroupingHazardous ChemicalsHazardous SubstancesHealthHumanIn VitroInvestigationLibrariesLiquid ChromatographyLocationMachine LearningMass Spectrum AnalysisMeasurementMeasuresModelingMolecularParentsPhaseProcessPropertyResearchResolutionRiskSamplingSampling StudiesScienceSolidSpecific qualifier valueSpectrometryStatistical Data InterpretationStructureSuperfundTestingTimeToxicologyTrainingTranslationsWaterWorkXenobioticsanalytical methodbasechemical spillcheminformaticscloud basedcommunity engagementcomputerized data processingdata disseminationdata managementdetection methodenvironmental chemicalexperiencehands-on learningin vivoinstrumentinstrumentationinterestion mobilitymachine learning algorithmnovelorgan on a chippublic databaseresponsescreeningsoil samplingstemtooltrendvolatile organic compound
项目摘要
Project 1 Abstract
The comprehensive assessment of hazardous substances in complex environmental samples is essential in
understanding the “environmental exposome” and identifying potential human health and environmental risks.
Although targeted analyses are commonly used to measure between 10 and 100 specific substances per study,
their precise parameters and limited coverage are not suitable for evaluating other potentially hazardous
substances that may be present in the samples. This limitation has showcased the importance of untargeted
measurements as hundreds of new chemicals are being introduced annually that need to be assessed. Since
untargeted analyses can focus on all detected features, they are able to evaluate those with statistical
significance between sample type and location, in addition to features with extremely high abundance. The
information from the untargeted studies therefore provides the evaluation of novel and legacy hazardous
substances in addition to their metabolites, intermediates and degradants which can be more hazardous than
the parent compounds. However, untargeted measurements are greatly challenged by how to optimize
instruments for broad characterization and then how to analyze all of the “big” data that are generated by the
new analytical methods. Thus, both analytical and computational developments are necessary. By combining
ion mobility spectrometry (IMS)-derived structural information, mass spectrometry (MS)-derived high-resolution
m/z measurements and new data processing algorithms, we aim to create a uniform workflow for evaluation of
complex environmental mixtures in the untargeted studies of samples obtained before, during and after
environmental emergencies. To enable comprehensive analytical characterization, we will couple the
multidimensional IMS-MS analyses with steps including sample concentration, extraction and liquid
chromatography (LC) separations to allow an in-depth characterization of the mixtures. The information obtained
from the untargeted IMS-MS and LC-IMS-MS studies will include molecular properties such as m/z, Kendrick
Mass Defect (KMD), retention time (RT) and collision cross section (CCS). As these values have shown utility in
targeted studies for molecular classification, they will be combined with our targeted library of >3,000
environmental chemicals from the past funding period and processed with cheminformatics and machine
learning algorithms to annotate and classify the unknown features from the untargeted studies. We will also
utilize both the targeted and untargeted studies to enable better disaster-related evaluation of potential chemical
exposures by creating a list containing thousands of hazardous substances for rapid characterization with
automated solid phase sample cleanup and IMS-MS. This automated SPE-IMS-MS platform will provide 10 s
sample-to-sample throughput and when coupled with cloud-based data assessment, it will enable the rapid
chemical analyses of complex environmental samples from disaster situations that may involve chemical spills.
项目1 摘要
复杂环境样品中有害物质的综合评估至关重要
了解“环境暴露组”并识别潜在的人类健康和环境风险。
尽管目标分析通常用于每项研究测量 10 到 100 种特定物质,
它们的精确参数和有限的覆盖范围不适用于其他潜在危险
样品中可能存在的物质这一限制显示了非目标的重要性。
自此以来,每年都有数百种新化学品被引入,需要进行评估。
无针对性的分析可以集中于所有检测到的特征,他们能够评估那些具有统计特征的特征
除了具有极高丰度的特征之外,样本类型和位置之间的重要性。
因此,来自非针对性研究的信息可以对新的和遗留的危险物质进行评估。
除了其代谢物、中间体和降解物之外,这些物质可能比其他物质更危险
然而,非目标测量面临着如何优化的巨大挑战。
进行广泛表征的仪器,然后如何分析由仪器生成的所有“大”数据
因此,分析和计算的发展是必要的。
离子迁移谱 (IMS) 衍生的结构信息、质谱 (MS) 衍生的高分辨率
m/z 测量和新的数据处理算法,我们的目标是创建一个统一的工作流程来评估
对之前、期间和之后获得的样本进行非针对性研究中的复杂环境混合物
为了实现全面的分析表征,我们将耦合
多维 IMS-MS 分析,步骤包括样品浓缩、萃取和液体
色谱 (LC) 分离可对所获得的信息进行深入表征。
来自非目标 IMS-MS 和 LC-IMS-MS 研究的结果将包括分子特性,例如 m/z、Kendrick
质量缺陷 (KMD)、保留时间 (RT) 和碰撞截面 (CCS) 这些值已显示出实用性。
分子分类的针对性研究,它们将与我们超过 3,000 个的目标库相结合
过去资助期间的环境化学品,并经过化学信息学和机器处理
我们还将使用学习算法对非针对性研究中的未知特征进行注释和分类。
利用有针对性和无针对性的研究,更好地评估潜在化学品的灾害相关情况
通过创建包含数千种有害物质的列表来快速表征暴露
自动化固相样品净化和 IMS-MS 该自动化 SPE-IMS-MS 平台将提供 10 秒的时间。
样本到样本的吞吐量,与基于云的数据评估相结合,它将能够实现快速
对可能涉及化学品泄漏的灾难情况下的复杂环境样本进行化学分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin S Baker其他文献
From big data to big insights: statistical and bioinformatic approaches for exploring the lipidome
从大数据到大见解:探索脂质组的统计和生物信息方法
- DOI:
10.1007/s00216-023-04991-2 - 发表时间:
2023-10-25 - 期刊:
- 影响因子:4.3
- 作者:
Jessie R. Chappel;Kaylie I. Kirkwood;David M Reif;Erin S Baker - 通讯作者:
Erin S Baker
Erin S Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin S Baker', 18)}}的其他基金
Increasing the Coverage, Sensitivity and Specificity of Rapid Lipidomic Measurements
提高快速脂质组学测量的覆盖范围、灵敏度和特异性
- 批准号:
10445729 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Increasing the Coverage, Sensitivity and Specificity of Rapid Lipidomic Measurements
提高快速脂质组学测量的覆盖范围、灵敏度和特异性
- 批准号:
10709875 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Understanding the role of lipids in structure and function of membrane proteins
了解脂质在膜蛋白结构和功能中的作用
- 批准号:
10413702 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Understanding the role of lipids in structure and function of membrane proteins
了解脂质在膜蛋白结构和功能中的作用
- 批准号:
10703408 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Center for Environmental and Health Effects of PFAS
PFAS 环境与健康影响中心
- 批准号:
10115845 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Center for Environmental and Health Effects of PFAS
PFAS 环境与健康影响中心
- 批准号:
10558140 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Platform Providing Increased Throughput, Sensitivity and Specificity for Metabolo
为代谢提供更高通量、灵敏度和特异性的平台
- 批准号:
8416845 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
Platform Providing Increased Throughput, Sensitivity and Specificity for Metabolo
为代谢提供更高通量、灵敏度和特异性的平台
- 批准号:
8687655 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
Platform Providing Increased Throughput, Sensitivity and Specificity for Metabolo
为代谢提供更高通量、灵敏度和特异性的平台
- 批准号:
8687655 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
相似国自然基金
大数据时代面向非线性方程组求解的投影算法及其应用研究
- 批准号:62302331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于杂交育种协同进化蚁群算法的工业大数据特征选择研究
- 批准号:62376089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向畜产品金融大数据的无监督领域自适应算法研究
- 批准号:62376106
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多中心医疗健康大数据融合统计模型与算法研究
- 批准号:12301381
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大数据聚类和降维中的深度矩阵和张量分解及其有效算法
- 批准号:12361079
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别:
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
- 批准号:
10585452 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别:
A novel platform for synthetic generation and statistical obfuscation of tabular clinical data, simulated images, and machine-generated text
用于表格临床数据、模拟图像和机器生成文本的合成生成和统计混淆的新颖平台
- 批准号:
10696488 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别:
A novel platform for synthetic generation and statistical obfuscation of tabular clinical data, simulated images, and machine-generated text
用于表格临床数据、模拟图像和机器生成文本的合成生成和统计混淆的新颖平台
- 批准号:
10696488 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别: