Proteins important for dense-core vesicle function
对致密核心囊泡功能重要的蛋白质
基本信息
- 批准号:10337224
- 负责人:
- 金额:$ 30.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsAttention deficit hyperactivity disorderBehaviorBeta CellBindingBiochemicalBiogenesisBiogenic AminesBiologicalBiological AssayBiological ProcessBiologyBlood GlucoseCaenorhabditis elegansCalciumCell LineCellsChemicalsComplexDataDefectDense Core VesicleDevelopmentDiabetes MellitusDiseaseDrug AddictionEating DisordersEndocrineEndocrine System DiseasesEventFunctional disorderGeneticGenetic ScreeningGoalsGolgi ApparatusGrowth FactorHormone secretionHormonesHumanIn VitroKnowledgeLeadMediatingMedicineMembraneMental DepressionMental disordersMetabolic DiseasesMolecularMonomeric GTP-Binding ProteinsMood DisordersNematodaNerveNeuroendocrine CellNeuronsNeuropeptidesObesityOrganellesPathway interactionsPeptidesPhenotypeProcessPropertyProteinsProteolytic ProcessingRoleSchizophreniaSet proteinSignaling MoleculeSorting - Cell MovementStructureSynaptic VesiclesSynaptic plasticitySystemTestingWorkbasebiophysical propertiesblood glucose regulationexperimental studygolginin vivoinsightmutantnervous system disorderneuron developmentneuronal survivalnovelnovel therapeuticspain sensationpeptide hormonerab GTP-Binding Proteinsresponsetraffickingtrans-Golgi Networkvesicular release
项目摘要
The dense-core vesicle is an organelle that releases peptide hormones, growth factors, and biogenic amines
from neurons and neuroendocrine cells in response to increases in calcium. Dense-core vesicle cargos
regulate a variety of biological processes including neuronal survival and development, pain sensation, blood
glucose homeostasis, and synaptic plasticity. As a consequence, numerous diseases such as mood disorders,
obesity, and diabetes are caused by defects in neuropeptide and hormone secretion. Thus, it is important to
determine the molecular machinery and mechanisms that orchestrate the biogenesis and release of these
vesicular carriers. However, in comparison to other vesicular compartments such as synaptic vesicles, little is
known about the molecular mechanisms of dense-core vesicle biogenesis, trafficking, and release. Dense-core
vesicles are generated at the trans-Golgi and gain their compartmental identity in a poorly defined maturation
process that occurs post-Golgi, but few molecules have been identified that function in these processes. Cargo
sorting to dense-core vesicles remains a puzzle. The long-term goal of this project is to understand the
molecular mechanisms by which dense-core vesicles are formed, sort cargos, and gain their compartmental
identity. A first step towards this goal is to identify molecules required for dense-core vesicle biogenesis. We
performed a genetic screen in the nematode C. elegans for mutants defective in dense-core vesicle function
and identified a number of new proteins that act in dense-core vesicle biogenesis, including the small GTPase
RAB-2 and CCCP-1, a RAB-2 effector, as well as the EARP endosomal trafficking complex. In this project, we
will test how RAB-2 and its effectors interact with EARP to mediate cargo sorting to dense-core vesicles. In
Aims 1 and 2, we will use genetic, biochemical and cell biological approaches in C. elegans and in the
mammalian insulin-secreting cell line INS-1 832/13 to determine how and where the RAB-2 and EARP
complexes are localized, whether they physically and functionally interact, and determine their precise roles in
the sorting, processing, and secretion of dense-core vesicle cargos. In Aim 3, we will use a combination of in
vitro biochemical approaches and in vivo functional assays to determine how the golgin-like coiled-coil protein
CCCP-1 binds membranes and functions to mediate dense-core vesicle biogenesis. These studies will
advance our understanding of how dense-core vesicles are generated and sort cargos, and provide general
insights into mechanisms of membrane trafficking and cargo sorting controlled by multisubunit complexes that
mediate trafficking between endosomal compartments and the trans-Golgi network.
致密核心囊泡是一种释放肽激素、生长因子和生物胺的细胞器
来自神经元和神经内分泌细胞对钙增加的反应。致密核心囊泡货物
调节多种生物过程,包括神经元存活和发育、痛觉、血液
葡萄糖稳态和突触可塑性。因此,许多疾病如情绪障碍、
肥胖和糖尿病是由神经肽和激素分泌缺陷引起的。因此,重要的是
确定协调这些物质的生物发生和释放的分子机制和机制
囊泡载体。然而,与其他囊泡区室(例如突触小泡)相比,几乎没有
了解致密核心囊泡生物发生、运输和释放的分子机制。致密核心
囊泡在反高尔基体处产生,并在不明确的成熟过程中获得其区室特性
发生在高尔基体后的过程,但很少有分子被发现在这些过程中发挥作用。货物
对致密核心囊泡的分类仍然是一个谜。该项目的长期目标是了解
形成致密核心囊泡、对货物进行分类并获得其隔室的分子机制
身份。实现这一目标的第一步是确定致密核心囊泡生物发生所需的分子。我们
对线虫秀丽隐杆线虫进行了遗传筛选,寻找致密核心囊泡功能缺陷的突变体
并鉴定了许多在致密核心囊泡生物发生中起作用的新蛋白质,包括小 GTPase
RAB-2 和 CCCP-1(RAB-2 效应子)以及 EARP 内体运输复合物。在这个项目中,我们
将测试 RAB-2 及其效应器如何与 EARP 相互作用以介导货物分选至致密核心囊泡。在
目标 1 和 2,我们将在秀丽隐杆线虫和
哺乳动物胰岛素分泌细胞系 INS-1 832/13 以确定 RAB-2 和 EARP 的方式和位置
复合物是局部的,无论它们在物理上和功能上相互作用,并决定它们在
致密核心囊泡货物的分类、加工和分泌。在目标 3 中,我们将结合使用
体外生化方法和体内功能测定,以确定高尔金样卷曲螺旋蛋白如何
CCCP-1 结合膜并发挥介导致密核心囊泡生物发生的作用。这些研究将
增进我们对致密核心囊泡如何生成和货物分类的理解,并提供一般性信息
深入了解多亚基复合物控制的膜运输和货物分类机制
介导内体区室和跨高尔基体网络之间的运输。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptide signaling in Caenorhabditis elegans.
G 蛋白偶联受体激酶 2 (GRK-2) 通过神经肽信号传导控制秀丽隐杆线虫的探索。
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:4.5
- 作者:Davis, Kristen;Mitchell, Christo;Weissenfels, Olivia;Bai, Jihong;Raizen, David M;Ailion, Michael;Topalidou, Irini
- 通讯作者:Topalidou, Irini
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ailion其他文献
Michael Ailion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ailion', 18)}}的其他基金
Exploring how cells generate and release distinct subpopulations of dense-core vesicles
探索细胞如何产生和释放不同的致密核心囊泡亚群
- 批准号:
10679873 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Signaling pathways that modulate neuronal activity
调节神经元活动的信号通路
- 批准号:
10524779 - 财政年份:2020
- 资助金额:
$ 30.33万 - 项目类别:
Signaling pathways that modulate neuronal activity
调节神经元活动的信号通路
- 批准号:
9884109 - 财政年份:2020
- 资助金额:
$ 30.33万 - 项目类别:
Signaling pathways that modulate neuronal activity
调节神经元活动的信号通路
- 批准号:
10322413 - 财政年份:2020
- 资助金额:
$ 30.33万 - 项目类别:
相似国自然基金
动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
- 批准号:32302789
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市河流底栖动物性状β多样性的空间格局及群落构建研究
- 批准号:32301334
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural mechanisms underlying behavioral variability in uni- and multi-sensory contexts
单感觉和多感觉环境中行为变异性的神经机制
- 批准号:
10715471 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Cell type-specific mechanisms of history-dependent perceptual biases in sensory cortex
感觉皮层历史依赖性知觉偏差的细胞类型特异性机制
- 批准号:
10739223 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Defining the molecular impact of 16p11.2 deletion on reward response in striatal dopamine receptor D1-expressing neurons
定义 16p11.2 缺失对纹状体多巴胺受体 D1 表达神经元奖赏反应的分子影响
- 批准号:
10750328 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别:
Understanding Foxp2-Mediated Molecular Signaling in Fear Learning
了解恐惧学习中 Foxp2 介导的分子信号传导
- 批准号:
10662864 - 财政年份:2023
- 资助金额:
$ 30.33万 - 项目类别: