Exploring how cells generate and release distinct subpopulations of dense-core vesicles
探索细胞如何产生和释放不同的致密核心囊泡亚群
基本信息
- 批准号:10679873
- 负责人:
- 金额:$ 23.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAfferent NeuronsBehaviorBehavior ControlBehavior DisordersBeta CellBiogenesisBiogenic AminesBiologicalBiological ModelsCaenorhabditis elegansCalciumCell LineCellsCellular biologyCharacteristicsDataDefectDense Core VesicleDiseaseDopamineElectron MicroscopyEndocrineEndosomesFamilyFunctional disorderFutureGenerationsHeterogeneityIndividualInsulinInvestigationKnowledgeLipidsMental disordersMetabolic DiseasesMetabolismMolecularMood DisordersNematodaNerve Growth FactorsNeurologicNeuromodulatorNeuronsNeuropeptidesNorepinephrineOrganellesPathway interactionsPatternPeptidesPhysiologicalPhysiologyPopulationProcessProtein IsoformsProteinsRattusRecyclingRoleSensorySignaling MoleculeSiteSortingStructure of beta Cell of isletSystemTestingVesiclecell typeexperimental studyinsightmembermonoaminenervous system disorderpeptide hormoneprotein complexrab GTP-Binding Proteinssegregationsensorsynaptotagminvesicular release
项目摘要
Project summary
When examined by electron microscopy, neurons can be seen to carry organelles that look like little black dots.
These black dots are called dense-core vesicles and they carry many important transmitters that act as
neuromodulators, including neuropeptides, nerve growth factors, and monoamines such as dopamine and
norepinephrine. Such dense-core vesicle cargos regulate a wide array of behaviors, and defects in such
cargos can contribute to numerous mood disorders and other neurological conditions. However, little is
understood about the cell biology of how dense-core vesicles are made, acquire cargos and mature, are
trafficked to release sites, and ultimately released. Thus, the little black dots in neurons are really a big black
box. Adding to the mysteries and complexity of these organelles, many neurons carry multiple dense-core
vesicle cargos in the same cell. Are these different cargos copackaged together in the same dense-core
vesicles or are they packaged separately in distinct vesicles? The answer to this question is surprisingly known
in only a few cases, and the general pattern of copackaging versus segregation of distinct cargos is unclear,
but is of key physiological relevance as it determines whether different dense-core vesicle cargos are
coreleased or can be released independently. Additionally, in cases where distinct dense-core vesicle
subpopulations are known to exist in the same cell, it is unclear how these distinct populations are generated
and how cargos are differentially sorted. To begin to address these gaps in understanding, here we aim to
establish two model systems for the study of distinct dense-core vesicle populations in the same cell: the ASI
sensory neuron in the nematode C. elegans and the rat pancreatic beta-cell line 832/13. Our preliminary data
show that members of a known dense-core vesicle biogenesis and maturation pathway, the Rab2/EARP
pathway, are required for one subpopulation of dense-core vesicles in both the ASI neuron and the 832/13 cell
line, but not for another subpopulation in the same cell. In Aim 1, we will further define the requirements for
members of the Rab2/EARP pathway in the biogenesis and maturation of distinct dense-core vesicle
subpopulations in the ASI neuron and 832/13 cells. Additionally, we will perform candidate screens in an
attempt to identify factors required for the Rab2/EARP-independent generation of dense-core vesicles in both
cell types. In Aim 2, we will test the hypothesis that different subpopulations of dense-core vesicles are marked
by different isoforms of the synaptotagmin family of calcium sensors. We will also determine whether these
synaptotagmins control the release of distinct dense-core vesicle subpopulations. In summary, this project will
identify the basic molecules required for the generation and release of distinct subpopulations of dense-core
vesicles in the same cell, and set the stage for more mechanistic investigations into how these processes
occur.
项目概要
当通过电子显微镜检查时,可以看到神经元携带看起来像小黑点的细胞器。
这些黑点被称为致密核心囊泡,它们携带许多重要的递质,充当
神经调节剂,包括神经肽、神经生长因子和单胺,如多巴胺和
去甲肾上腺素。这种致密核心囊泡货物调节多种行为,并且这些缺陷
货物可能导致多种情绪障碍和其他神经系统疾病。然而,很少的是
了解致密核心囊泡如何制造、获取货物和成熟的细胞生物学
被传送到发布网站,并最终被发布。因此,神经元中的小黑点实际上是一个大黑点
盒子。许多神经元携带多个致密核心,这增加了这些细胞器的神秘性和复杂性。
同一细胞中的囊泡货物。这些不同的货物是否被共同包装在同一个致密核心中?
囊泡还是它们单独包装在不同的囊泡中?这个问题的答案出人意料地众所周知
仅在少数情况下,并且不同货物共同包装与隔离的一般模式尚不清楚,
但具有关键的生理相关性,因为它决定了不同的致密核心囊泡货物是否是
共同发布或可以独立发布。此外,如果存在明显的致密核心囊泡
已知亚群存在于同一细胞中,但尚不清楚这些不同的亚群是如何产生的
以及货物如何进行差异化分类。为了开始解决这些理解上的差距,我们的目标是
建立两个模型系统来研究同一细胞中不同的致密核心囊泡群:ASI
线虫线虫和大鼠胰腺 β 细胞系 832/13 中的感觉神经元。我们的初步数据
显示已知的致密核心囊泡生物发生和成熟途径的成员 Rab2/EARP
ASI 神经元和 832/13 细胞中的一个致密核心囊泡亚群都需要这一途径
线,但不适用于同一细胞中的另一个亚群。在目标1中,我们将进一步明确要求
Rab2/EARP 通路成员在不同致密核心囊泡的生物发生和成熟中的作用
ASI 神经元和 832/13 细胞中的亚群。此外,我们将在
尝试确定在两种细胞中独立于 Rab2/EARP 生成致密核心囊泡所需的因素
细胞类型。在目标 2 中,我们将检验以下假设:不同的致密核心囊泡亚群被标记
由钙传感器突触结合蛋白家族的不同亚型产生。我们还将确定这些是否
突触结合蛋白控制不同的致密核心囊泡亚群的释放。综上所述,本项目将
识别致密核不同亚群的产生和释放所需的基本分子
同一细胞中的囊泡,并为更多机制研究这些过程如何奠定基础
发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ailion其他文献
Michael Ailion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ailion', 18)}}的其他基金
Signaling pathways that modulate neuronal activity
调节神经元活动的信号通路
- 批准号:
10524779 - 财政年份:2020
- 资助金额:
$ 23.33万 - 项目类别:
Signaling pathways that modulate neuronal activity
调节神经元活动的信号通路
- 批准号:
9884109 - 财政年份:2020
- 资助金额:
$ 23.33万 - 项目类别:
Signaling pathways that modulate neuronal activity
调节神经元活动的信号通路
- 批准号:
10322413 - 财政年份:2020
- 资助金额:
$ 23.33万 - 项目类别:
Proteins important for dense-core vesicle function
对致密核心囊泡功能重要的蛋白质
- 批准号:
10337224 - 财政年份:2018
- 资助金额:
$ 23.33万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Characterization of Ionotropic Receptors in Mating and Blood Feeding in Anopheles mosquitoes
按蚊交配和吸血中离子型受体的表征
- 批准号:
10736638 - 财政年份:2023
- 资助金额:
$ 23.33万 - 项目类别:
Genetic analysis of intrinsic sensory neuron function in the enteric neural circuits
肠神经回路中内在感觉神经元功能的遗传分析
- 批准号:
10568622 - 财政年份:2023
- 资助金额:
$ 23.33万 - 项目类别:
PACAP/PAC1 receptor signaling in micturition neurocircuits: effects of stress and injury/inflammation
排尿神经回路中的 PACAP/PAC1 受体信号传导:压力和损伤/炎症的影响
- 批准号:
10774523 - 财政年份:2023
- 资助金额:
$ 23.33万 - 项目类别:
Defining and modeling the cellular interactions for rhythmic colon motility
节律性结肠运动的细胞相互作用的定义和建模
- 批准号:
10711530 - 财政年份:2023
- 资助金额:
$ 23.33万 - 项目类别: