Ex vivo analysis of human brain tumor cells in a microvascular niche model
微血管生态位模型中人脑肿瘤细胞的离体分析
基本信息
- 批准号:10339325
- 负责人:
- 金额:$ 52.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-04 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAnimalsBiocompatible MaterialsBiologicalBiological AssayBiologyBiomedical EngineeringBone MarrowBrainBrain NeoplasmsCancer BiologyCancer CenterCell Culture TechniquesCellsCerebrovascular systemClinicClinical DataCoculture TechniquesDataDevelopmentDiseaseDisease ProgressionDistantDrug Delivery SystemsEnvironmentGelGenetic TranscriptionGlioblastomaGliomaHeterogeneityHumanIn VitroIndividualInfiltrationLaboratoriesLibrariesLinkMaintenanceMalignant NeoplasmsMalignant neoplasm of brainMeasuresMicrofluidicsModelingMolecularMolecular BiologyMotivationOncologyPathologicPathologyPatientsPericytesPerivascular NeoplasmPharmaceutical PreparationsPhenotypePilot ProjectsPrimary Brain NeoplasmsPrimary NeoplasmPrognosisProliferatingPropertyProteomicsRelapseReproducibilityResistance developmentResolutionSamplingSpecimenStructureSystemTechnologyTestingTissue EngineeringTrainingTumor Cell MigrationTumor Stem CellsTumor SubtypeUniversitiesangiogenesiscell behaviorcell typechemotherapyclinical applicationcohortcostdrug testingexperiencegenetic signatureimprovedin vitro Modelin vivo Modelinterestleukemic stem cellmedical schoolsmicrosystemsmid-career facultymigrationmind controlmouse modelmultidisciplinaryneoplastic cellneuropathologyneurosurgerynovelpatient derived xenograft modelpatient prognosisprecision drugsprecision medicinepredict clinical outcomereal time monitoringresponseself-renewalsingle cell analysissingle-cell RNA sequencingsmall moleculestem cellsstem-like cellsuccesssynergismtargeted treatmenttherapy resistanttranscriptometranscriptome sequencingtranscriptomicstreatment stratificationtumortumor heterogeneity
项目摘要
PROJECT SUMMARY
The region near the brain vasculature in human brain tumors, called the perivascular niche (PVN), is an
important microenvironment for the maintenance of brain tumor stem-like cells (BTSCs), the development of
resistance to chemo or targeted therapies, and the path for tumor infiltration to distant regions in the whole
brain, leading to incurable diseases. Current in vitro models such as 2D cell cultures or 3D tumor spheroids do
not contain this niche environment. Mouse models of brain tumors can recapitulate some aspects of the PVN,
but have challenges in terms of costly assays, low throughput, and lack of the ability for high-resolution live cell
tracking of BTSC dynamics. Herein, we propose to develop a tissue-engineered 3D microvascular niche-on-a-
chip model that can incorporate primary brain tumor cells from patients in order to bridge this gap between in
vitro and in vivo models. Our pilot study has demonstrated the success in co-culture of patient-derived
glioblastoma cells and microvasculature in a microfluidic gel system and observed preferential localization of
BTSCs in the PVN. Comparing ex vivo dynamics of individual tumor cells on-chip to single-cell transcriptomes
across 10 patients further revealed a correlation between perivascular localization and transcriptional subtypes.
In this project, we propose to further examine tumor cell migration and localization using a larger cohort of
patient specimens and compare the results to pathological and clinical data, aiming to develop it into an ex vivo
functional assay for patient prognosis and subclassification (Aim 1). We will apply scRNA-seq to the same
samples to generate correlative data to identify subtypes associated with distinct ex vivo dynamics in the
tissue-engineered PVN model, which can help elucidate the molecular mechanisms of PVN in tumor cell fate
and invasion (Aim 2). Finally, we will investigate the response of tumor cells in PVN to chemo and targeted
therapies administered through the perfusable microvascular network to assess the potential to perform
personalized drug test and therapeutic stratification (Aim 3). This project will lead to a novel tissue-engineered
microsystem to not only study the biology of PVN in human brain tumor development but also develop new
assays for ex vivo test of human tumor cells for precision medicine.
项目概要
人脑肿瘤中靠近脑血管系统的区域称为血管周围生态位(PVN),是一个
维持脑肿瘤干样细胞(BTSC)的重要微环境,
对化疗或靶向治疗的耐药性,以及肿瘤整体向远处区域浸润的路径
脑,导致不治之症。当前的体外模型(例如 2D 细胞培养物或 3D 肿瘤球体)确实可以
不包含这个利基环境。小鼠脑肿瘤模型可以概括 PVN 的某些方面,
但面临检测成本高、通量低以及缺乏高分辨率活细胞能力等挑战
跟踪 BTSC 动态。在此,我们建议开发一种组织工程 3D 微血管利基-
芯片模型可以整合来自患者的原发性脑肿瘤细胞,以弥补之间的差距
体外和体内模型。我们的试点研究证明了患者来源的共培养的成功
微流体凝胶系统中的胶质母细胞瘤细胞和微血管,并观察到
PVN 中的 BTSC。比较芯片上单个肿瘤细胞与单细胞转录组的离体动力学
对 10 名患者的研究进一步揭示了血管周围定位与转录亚型之间的相关性。
在这个项目中,我们建议使用更大的队列进一步检查肿瘤细胞迁移和定位
患者标本并将结果与病理和临床数据进行比较,旨在将其开发为离体
用于患者预后和亚分类的功能测定(目标 1)。我们将 scRNA-seq 应用于相同的
样本生成相关数据,以识别与不同的离体动力学相关的亚型
组织工程PVN模型,有助于阐明PVN在肿瘤细胞命运中的分子机制
和入侵(目标 2)。最后,我们将研究 PVN 中肿瘤细胞对化疗和靶向治疗的反应。
通过可灌注微血管网络进行治疗,以评估执行的潜力
个性化药物测试和治疗分层(目标 3)。该项目将产生一种新型的组织工程
微系统不仅可以研究 PVN 在人脑肿瘤发展中的生物学,还可以开发新的
用于精密医学的人体肿瘤细胞离体测试的测定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Fan其他文献
Rong Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Fan', 18)}}的其他基金
Yale TMC for Cellular Senescence in Lymphoid Organs
耶鲁大学 TMC 研究淋巴器官细胞衰老
- 批准号:
10689275 - 财政年份:2021
- 资助金额:
$ 52.67万 - 项目类别:
Defining Epigenetic States of Senescent Cells and Associated Tissue Environments in the Human Lymphoid Tissues
定义人类淋巴组织中衰老细胞和相关组织环境的表观遗传状态
- 批准号:
10666979 - 财政年份:2021
- 资助金额:
$ 52.67万 - 项目类别:
Yale TMC for Cellular Senescence in Lymphoid Organs
耶鲁大学 TMC 研究淋巴器官细胞衰老
- 批准号:
10384399 - 财政年份:2021
- 资助金额:
$ 52.67万 - 项目类别:
Highly scalable and sensitive spatial transcriptomic and epigenomic sequencing of brain tissues from human and non-human primate
对人类和非人类灵长类动物的脑组织进行高度可扩展且灵敏的空间转录组和表观基因组测序
- 批准号:
10370074 - 财政年份:2021
- 资助金额:
$ 52.67万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
脆性X综合征动物模型中异常视觉信息处理和视觉注意力的神经环路机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of Cell Culture Inserts and 3D In Vitro Tissue Models Utilizing Novel Electrospun Scaffolds
利用新型静电纺丝支架开发细胞培养插入物和 3D 体外组织模型
- 批准号:
10697932 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Development of Cell Culture Inserts and 3D In Vitro Tissue Models Utilizing Novel Electrospun Scaffolds
利用新型静电纺丝支架开发细胞培养插入物和 3D 体外组织模型
- 批准号:
10697932 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Utility of Human Organoids for Safety and Efficiency Evaluations of Genome Editing Therapeutics
人类类器官在基因组编辑治疗安全性和效率评估中的应用
- 批准号:
10667181 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Effects of 16p11.2 copy number variation on neuronal development and pathology
16p11.2 拷贝数变异对神经元发育和病理学的影响
- 批准号:
10659523 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别:
Targeting Cholesterol Homeostasis to maintain vision in MS-like optic neuritis
针对多发性硬化症样视神经炎的胆固醇稳态以维持视力
- 批准号:
10657163 - 财政年份:2023
- 资助金额:
$ 52.67万 - 项目类别: