A deep learning and experiment integrated platform for stable mRNA vaccines development
用于稳定mRNA疫苗开发的深度学习和实验集成平台
基本信息
- 批准号:10334939
- 负责人:
- 金额:$ 36.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-22 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAnti-Bacterial AgentsAttentionCOVID-19COVID-19 vaccineChemicalsCodeCold ChainsCommunicable DiseasesComputer Vision SystemsDataData SetDependenceDeveloping CountriesEngineeringEnzyme-Linked Immunosorbent AssayFaceFeedbackFluorescenceGenetic TranscriptionHalf-LifeHydrolysisImmunogeneticsIn VitroKnowledgeLengthMammalian CellMessenger RNAMethodsModelingNatural Language ProcessingNatural SciencesNucleic AcidsPerformancePhysicsPreparationProcessProductionPropertyProteinsRNARNA DegradationRNA InstabilityRNA SequencesRNA StabilityRNA vaccineResearchResearch PersonnelRestRoleShipsStructureSystemTechniquesTemperatureTestingThe SunTrainingTranslationsUntranslated RNAUpdateVaccine ProductionVaccinesValidationVariantVertebral columnViralVirusWestern BlottingWorkbasecostdata-driven modeldeep learningdeep learning modeldesignexperimental studyfight againstimprovedin vivonovelpandemic diseaseprotein foldingresearch and developmentresponserural areasupervised learningtherapeutic RNAtransfer learningunsupervised learningvaccine development
项目摘要
Among all approaches, messenger RNA (mRNA)-based vaccines have emerged as a rapid and versatile
candidate to quickly respond to virus pandemics, including coronavirus disease 2019 (COVID-19). But mRNA
vaccines face key potential limitations. Researchers have observed that RNA molecules tend to spontaneously
degrade, which is a serious limitation - a single cut in the mRNA backbone can nullify the mRNA vaccine.
Currently, little is known on the details of where in the backbone of a given RNA is most prone to degradation
and design of super stable messenger RNA molecules is an urgent challenge. Without this knowledge, mRNA
vaccines against COVID-19 will require stringent conditions for preparation, storage, and transport. A promising
potential solution is deep learning, a general class of data-driven modeling approach, which has proved dominant
in many fields including computer vision, natural language processing, protein folding, and nucleic acid feature
prediction tasks. In this proposal, Dr. Qing Sun aims to combine deep learning and experiments to predict mRNA
vaccines that are stable at room temperature. By adapting two deep learning techniques including self-attention
and convolutions, she will create interpretable end to end models to predict COVID-19 vaccine secondary
structures directly from sequence information and in the end, she will use a synthetic approach that rapidly
generates mRNA vaccine to validate and further improve their deep learning model. Specifically, the research
objectives of this proposal are: 1) to develop the deep learning model using self-attention and convolution, which
capture long-range dependencies, to predict RNA secondary structures and to train the model using existing
RNA secondary structure dataset with high accuracy and efficiency; 2) to employ transfer learning for mRNA
vaccine stability predictions; and 3) to validate and further improve the model performance using experimental
demand-based mRNA production system. She will produce hundreds of mRNA vaccines sequences and test
their stabilities in the lab to serve as dataset to validate and retrain their model. This project will serve as a
framework for other mRNA vaccine processing for rapid response to pandemics. The secondary structure
prediction knowledge from this proposal will also help characterize natural mRNA and synthetic mRNA for natural
science and engineering purposes.
在所有方法中,基于信使 RNA (mRNA) 的疫苗已成为一种快速且多功能的疫苗。
快速应对病毒大流行的候选者,包括 2019 年冠状病毒病 (COVID-19)。但mRNA
疫苗面临着关键的潜在限制。研究人员观察到RNA分子倾向于自发地
降解,这是一个严重的限制——mRNA 主链的一次切割就可以使 mRNA 疫苗失效。
目前,对于给定 RNA 主链中最容易降解的位置的细节知之甚少
超稳定信使RNA分子的设计是一个紧迫的挑战。如果没有这些知识,mRNA
针对 COVID-19 的疫苗需要严格的制备、储存和运输条件。一个有前途的
潜在的解决方案是深度学习,这是一种通用的数据驱动建模方法,已被证明占主导地位
在计算机视觉、自然语言处理、蛋白质折叠、核酸特征等多个领域
预测任务。在这个提案中,孙庆博士旨在结合深度学习和实验来预测mRNA
在室温下稳定的疫苗。通过采用包括自注意力在内的两种深度学习技术
和卷积,她将创建可解释的端到端模型来预测 COVID-19 疫苗二次接种
直接从序列信息中构建结构,最后,她将使用一种合成方法,可以快速
生成 mRNA 疫苗来验证并进一步改进他们的深度学习模型。具体来说,研究
该提案的目标是:1)使用自注意力和卷积开发深度学习模型,其中
捕获长程依赖性,预测 RNA 二级结构并使用现有的模型训练模型
高精度、高效率的RNA二级结构数据集; 2)对mRNA采用迁移学习
疫苗稳定性预测; 3)使用实验验证并进一步提高模型性能
基于需求的 mRNA 生产系统。她将生产数百个 mRNA 疫苗序列并进行测试
他们在实验室中的稳定性可以作为数据集来验证和重新训练他们的模型。该项目将作为
用于快速应对流行病的其他 mRNA 疫苗处理框架。二级结构
该提案的预测知识也将有助于表征天然 mRNA 和合成 mRNA
科学和工程目的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
qing sun其他文献
qing sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('qing sun', 18)}}的其他基金
A deep learning and experiment integrated platform for stable mRNA vaccines development
用于稳定mRNA疫苗开发的深度学习和实验集成平台
- 批准号:
10530694 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
相似国自然基金
二(苯乙烯基)酮类光敏抗菌剂的设计,合成及应用研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
土壤真菌群落对典型三唑类抗菌剂的抗药性响应特征和机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于呫吨酮的拟肽抗菌剂设计合成、抗菌活性和分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Non-coating anti-microbial, anti-host protein deposition, anti-inflammatory urinary catheter
无涂层抗菌、抗宿主蛋白沉积、抗炎导尿管
- 批准号:
10697567 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
Non-coating anti-microbial, anti-host protein deposition, anti-inflammatory urinary catheter
无涂层抗菌、抗宿主蛋白沉积、抗炎导尿管
- 批准号:
10697567 - 财政年份:2023
- 资助金额:
$ 36.12万 - 项目类别:
A deep learning and experiment integrated platform for stable mRNA vaccines development
用于稳定mRNA疫苗开发的深度学习和实验集成平台
- 批准号:
10530694 - 财政年份:2021
- 资助金额:
$ 36.12万 - 项目类别:
Florida International University MARC U*STAR Program
佛罗里达国际大学 MARC U*STAR 项目
- 批准号:
7426578 - 财政年份:2008
- 资助金额:
$ 36.12万 - 项目类别: