GENETIC ANALYSIS OF PLEIOTROPIC DRUG RESISTANCE
多效性耐药性的遗传分析
基本信息
- 批准号:2187366
- 负责人:
- 金额:$ 15.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-08-01 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:DNA footprinting RNase protection assay SDS polyacrylamide gel electrophoresis Saccharomyces cerevisiae active sites affinity chromatography autoradiography chemical binding fungal genetics gene deletion mutation gene expression genetic mapping immunofluorescence technique immunoprecipitation molecular cloning multidrug resistance northern blottings nucleic acid hybridization pleiotropism protein structure function transcription factor western blottings
项目摘要
Multiple drug resistance (Mdr) refers to the ability of tumor cells to
avoid the toxic action of anticancer drugs with unrelated modes of
action. Animal cells often acquire this property by amplifying the
expression of a P-glycoprotein-encoding gene, MDR1. Yeast cells also
possess a phenotype, known as pleiotropic drug resistance (Pdr),
analogous to mammalian Mdr. The yeast genes that confer Pdr inactivate
the toxic effects of a variety of unrelated drugs. The goal of this work
is to study the genes that elicit Pdr in yeast as a model for the more
complicated mammalian system.
PDR5 is a yeast gene that encodes a protein with homology to the MDR1
gene product. Antisera will be prepared against the PDR5 protein and
used to determine the location of this protein. Fractionation studies
will determine the membrane region that this protein is likely to be
associated with.
The promoter region of PDR5 will be subjected to deletion mutagenesis in
order to identify DNA elements important in the control of the expression
of this gene. Yeast mutants that lack PDR5 are hypersensitive to several
drugs, indicating the importance of this protein in drug detoxification.
PDR4 and PDR7 are genes that affect PDR5 mRNA levels. The site of action
of these gene products at PDR5 will be determined.
PDR1 and PDR3 are zinc finger transcription factors that can give rise
to semi-dominant Pdr mutants. Both of these factors affect PDR5
expression but their mode of action is unknown. The ability of these
regulatory proteins to bind to the PDR5 promoter will be determined. We
will produce antisera against PDR3 and assess whether the localization
of this factor changes in semi-dominant PDR3 mutant strains. The nature
of the amino acid change in the semi-dominant PDR3 mutants will be
determined to gain insight into how this protein functions.
PDR3 stimulates drug resistance in a PDR5-independent fashion. Other
downstream target genes provide are regulated by PDR3 and give rise to
Pdr. These other drug resistance pathways will be identified by
screening a yeast high copy plasmid library for genes that confer Pdr
only in the presence of PDR3.
Glutathione S-transferases (GST) are believed to be important in drug
detoxification in a variety of organisms. Yeast GST genes will be cloned
and mutant strains of yeast produced that lack these proteins. Viability
and drug resistance will be assayed for the GST-less mutants.
Yeast and mammalian cells share a great deal of functional homology as
has already been seen in the study of protein localization and
transcription. The homology between PDR5 and MDR1 indicates that
multiple drug resistance is also likely to be conserved between yeast and
animals. The use of genetics to study Pdr in yeast provides a unique
advantage not available in mammalian cells.
多重耐药性(Mdr)是指肿瘤细胞对多种药物产生耐药性的能力。
避免与不相关模式的抗癌药物产生毒性作用
行动。 动物细胞通常通过放大
P-糖蛋白编码基因 MDR1 的表达。 酵母细胞也
具有一种表型,称为多效耐药性(Pdr),
类似于哺乳动物 Mdr。 赋予 Pdr 失活的酵母基因
各种不相关药物的毒性作用。 这项工作的目标
是研究在酵母中引发 Pdr 的基因,作为更多研究的模型
复杂的哺乳动物系统。
PDR5 是一种酵母基因,编码与 MDR1 同源的蛋白质
基因产物。 将针对 PDR5 蛋白制备抗血清并
用于确定该蛋白质的位置。 分馏研究
将确定该蛋白质可能存在的膜区域
与.相关联。
PDR5 的启动子区域将受到缺失诱变
为了识别在表达控制中重要的DNA元件
这个基因的。 缺乏 PDR5 的酵母突变体对多种物质过敏
药物,说明该蛋白在药物解毒中的重要性。
PDR4 和 PDR7 是影响 PDR5 mRNA 水平的基因。 行动地点
将确定 PDR5 处的这些基因产物。
PDR1和PDR3是锌指转录因子,可以产生
半显性 Pdr 突变体。 这两个因素都会影响 PDR5
表达但其作用方式尚不清楚。 这些能力
将确定与 PDR5 启动子结合的调节蛋白。 我们
将产生针对 PDR3 的抗血清并评估是否本地化
该因子在半显性 PDR3 突变株中发生变化。 大自然
半显性 PDR3 突变体中的氨基酸变化将是
决心深入了解这种蛋白质的功能。
PDR3 以不依赖于 PDR5 的方式刺激耐药性。 其他
下游靶基因受 PDR3 调节并产生
博士。 这些其他耐药途径将通过
筛选酵母高拷贝质粒库中赋予 Pdr 的基因
仅在 PDR3 存在的情况下。
谷胱甘肽 S-转移酶 (GST) 被认为在药物中很重要
多种生物体的解毒作用。 酵母GST基因将被克隆
以及缺乏这些蛋白质的酵母突变株。 生存能力
并对无 GST 的突变体进行耐药性分析。
酵母和哺乳动物细胞在功能上有很多同源性
在蛋白质定位的研究中已经看到
转录。 PDR5 和 MDR1 之间的同源性表明
多重耐药性也可能在酵母和
动物。 利用遗传学研究酵母中的 Pdr 提供了独特的方法
哺乳动物细胞所不具备的优势。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W Scott Moye-Rowley其他文献
W Scott Moye-Rowley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W Scott Moye-Rowley', 18)}}的其他基金
Chemical genetic analysis of Candida glabrata CDR1 expression
光滑念珠菌CDR1表达的化学遗传分析
- 批准号:
10588383 - 财政年份:2022
- 资助金额:
$ 15.42万 - 项目类别:
Identification of virulence determinants under the transcriptional control of AtrR in Aspergillus fumigatus
烟曲霉 AtrR 转录控制下毒力决定簇的鉴定
- 批准号:
10088398 - 财政年份:2020
- 资助金额:
$ 15.42万 - 项目类别:
Identification of virulence determinants under the transcriptional control of AtrR in Aspergillus fumigatus
烟曲霉 AtrR 转录控制下毒力决定簇的鉴定
- 批准号:
9914775 - 财政年份:2020
- 资助金额:
$ 15.42万 - 项目类别:
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10451817 - 财政年份:2019
- 资助金额:
$ 15.42万 - 项目类别:
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10664888 - 财政年份:2019
- 资助金额:
$ 15.42万 - 项目类别:
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10207376 - 财政年份:2019
- 资助金额:
$ 15.42万 - 项目类别:
A new pathway for azole resistance in Aspergillus fumigatus
烟曲霉唑类抗性的新途径
- 批准号:
8972533 - 财政年份:2015
- 资助金额:
$ 15.42万 - 项目类别:
A new pathway for azole resistance in Aspergillus fumigatus
烟曲霉唑类抗性的新途径
- 批准号:
9089985 - 财政年份:2015
- 资助金额:
$ 15.42万 - 项目类别:
Role of transcriptional regulation in Aspergillus fumigatus drug resistance
转录调控在烟曲霉耐药性中的作用
- 批准号:
8191041 - 财政年份:2011
- 资助金额:
$ 15.42万 - 项目类别:
Role of transcriptional regulation in Aspergillus fumigatus drug resistance
转录调控在烟曲霉耐药性中的作用
- 批准号:
8264953 - 财政年份:2011
- 资助金额:
$ 15.42万 - 项目类别:
相似海外基金
INTERFERON REGULATORY FACTORS CELL CYCLE AND EBV LATENCY
干扰素调节因子细胞周期和 EBV 潜伏期
- 批准号:
2837506 - 财政年份:1997
- 资助金额:
$ 15.42万 - 项目类别:
INTERFERON REGULATORY FACTORS CELL CYCLE AND EBV LATENCY
干扰素调节因子细胞周期和 EBV 潜伏期
- 批准号:
6124359 - 财政年份:1997
- 资助金额:
$ 15.42万 - 项目类别:
INTERFERON REGULATORY FACTORS CELL CYCLE AND EBV LATENCY
干扰素调节因子细胞周期和 EBV 潜伏期
- 批准号:
6328770 - 财政年份:1997
- 资助金额:
$ 15.42万 - 项目类别:
INTERFERON REGULATORY FACTORS CELL CYCLE AND EBV LATENCY
干扰素调节因子细胞周期和 EBV 潜伏期
- 批准号:
6475496 - 财政年份:1997
- 资助金额:
$ 15.42万 - 项目类别:
INTERFERON REGULATORY FACTORS CELL CYCLE AND EBV LATENCY
干扰素调节因子细胞周期和 EBV 潜伏期
- 批准号:
2464629 - 财政年份:1997
- 资助金额:
$ 15.42万 - 项目类别: