Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
基本信息
- 批准号:10330420
- 负责人:
- 金额:$ 74.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-07 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptedAirAlgorithmsAmericanAnesthesia proceduresAnimalsArchitectureCalibrationCaliforniaCaringCessation of lifeCharacteristicsClassificationClinicalClinical Decision Support SystemsClinical ManagementClinical ResearchComplexCritical CareDataData SetDatabasesDevelopmentDiagnosisDiseaseDocumentationEffectivenessElectronic Health RecordEnvironmentEtiologyEvaluationFrequenciesGoalsHealthHealthcareHealthcare SystemsHomeostasisHospital MortalityHospitalsHypotensionInsufflationIntensive Care UnitsInterventionIntra-abdominalIntraoperative CareIntraoperative PeriodIntubationKnowledgeLeadLos AngelesMachine LearningMeasuresMedical centerModelingMonitorNatureOperating RoomsOperative Surgical ProceduresOutcomePathologic ProcessesPatient CarePatientsPatternPerioperativePhasePhysiologicalPostoperative ComplicationsPostoperative PeriodProcessRecommendationRegistriesResourcesResuscitationReverse engineeringRunningSamplingShockSignal TransductionSkinSpecificityStressSurgical incisionsSystemTechniquesTestingTimeTitrationsTrainingUniversitiesValidationVariantWorkbaseclinical careclinical decision supportclinical riskcohortdata integrationdata streamsdata structuredatabase structuredeep neural networkdemographicsdensitydiagnostic accuracyeffectiveness evaluationelectronic datagraphical user interfacehemodynamicshigh riskimprovedinformation displayinsightinteroperabilityiterative designlarge datasetsmachine learning algorithmmachine learning modelmodel developmentmortalityneural network algorithmnovelorgan injurypatient populationpersonalized medicinepreconditioningpredictive modelingpredictive toolspressureprospectiveprototyperelational databaseresponserisk predictionsimulation environmentstressorsupport toolssurgical risktooltreatment response
项目摘要
Project Summary / Abstract
If one could accurately predict who, when and why patients develop cardiorespiratory instability (CRI) during
surgery, then effective preemptive treatments could be given to improve postoperative outcome and more
effectively use healthcare resources. But signs of shock often occur late once organ injury is already present.
The goal of this proposal is to develop, validate, and test real-time intraoperative risk prediction tools based on
electronic health record (EHR) data and high-fidelity physiological waveforms to predict CRI and make the
databases of intraoperative data and waveforms used for these developments freely accessible. This is
extremely relevant because although 5.7 million Americans are admitted to an Intensive Care Units (ICU) in one
year, more than 42 millions undergo surgery annually. Previous and ongoing studies conducted in the ICU and
in the step down unit have built the architecture to collect real-time high-fidelity physiological waveform data
streams and integrate them with patient demographics from the EHR to build large data sets, and derive
actionable fused parameters based on machine learning (ML) analytics as well as display information in real
time at the bedside to drive clinical decision support (CDS) in the critical care setting. The goal of this proposal
is to apply these ML approaches to the complex and time compressed environment of high-risk surgery where
greater patient and disease variability exist and shorter period of time is available to deliver truly personalized
medicine approaches. The work will be initiated using an already existing annotated intraoperative database
from the University of California Irvine including EHR and high-fidelity waveform data. This operating room
database already exists and needs only to be extracted. This data will be used for the initial training and
development of the ML model that will then be tested on prospectively collected University of California Los
Angeles and University of Pittsburgh Medical Center databases. Simultaneously, this approach will use existing
knowledge of CRI patterns derived from previous step down unit / intensive care unit cohorts, MIMIC II data,
University of California Irvine data, and animal studies to create smart alarms and graphic user interface for
clinical decision support based on functional hemodynamic monitoring principles. The next step will then
leverage the focus on the issues and strengths of the intraoperative environment, some of which can be listed
as: 1) Known patients characteristics before surgery to define pre-stress baseline, allowing functional
hemodynamic monitoring stress evaluations, preconditioning, and other preoperative calibrations, 2) High
degree of direct observation and data density during most phases of surgery allowing close semi-autonomous
monitoring and titration of novel treatment algorithms early, 3) Defined stages in the initial part of surgery
(induction, intubation, skin incision) allowing ML approaches to build large common relational database
registries, and 4) Defined surgical procedure and stressors (anesthesia induction, intra-abdominal air insufflation,
and other surgery-specific interventions), which will alter the impact of CRI on measured variables.
项目概要/摘要
如果能够准确预测谁、何时以及为何患者在治疗过程中出现心肺不稳定 (CRI)
手术,然后可以给予有效的预防性治疗以改善术后结果等
有效利用医疗资源。但是,一旦器官损伤已经存在,休克的迹象通常会出现得很晚。
该提案的目标是开发、验证和测试基于以下内容的实时术中风险预测工具:
电子健康记录 (EHR) 数据和高保真生理波形来预测 CRI 并制定
用于这些开发的术中数据和波形数据库可免费访问。这是
极其相关,因为尽管一年内就有 570 万美国人住进重症监护病房 (ICU)
每年有超过 4200 万人接受手术。之前和正在进行的在 ICU 进行的研究
在降压单元中构建了采集实时高保真生理波形数据的架构
将其与 EHR 中的患者人口统计数据进行流处理,以构建大型数据集,并得出
基于机器学习 (ML) 分析的可操作融合参数以及真实显示信息
在重症监护环境中,在床边推动临床决策支持 (CDS) 的时间。本提案的目标
就是将这些机器学习方法应用于高风险手术的复杂且时间压缩的环境中
存在更大的患者和疾病变异性,并且可以在更短的时间内提供真正的个性化服务
医学方法。这项工作将使用现有的带注释的术中数据库启动
来自加州大学欧文分校,包括 EHR 和高保真波形数据。这个手术室
数据库已经存在,只需提取即可。该数据将用于初始训练和
开发 ML 模型,然后在预期收集的加州大学洛杉矶分校上进行测试
安吉利斯和匹兹堡大学医学中心数据库。同时,该方法将利用现有的
来自先前降压病房/重症监护病房队列的 CRI 模式知识、MIMIC II 数据、
加州大学欧文分校数据和动物研究创建智能警报和图形用户界面
基于功能性血流动力学监测原则的临床决策支持。然后下一步将
重点关注术中环境的问题和优势,其中一些可以列出
如下: 1) 手术前已知患者特征,以确定预应力基线,允许功能性评估
血流动力学监测、压力评估、预处理和其他术前校准,2) 高
在手术的大多数阶段直接观察的程度和数据密度允许接近的半自主
早期监测和调整新的治疗算法,3) 手术初始阶段的明确阶段
(诱导、插管、皮肤切开)允许机器学习方法构建大型通用关系数据库
登记处,以及 4) 明确的手术程序和压力源(麻醉诱导、腹腔内吹气、
和其他手术特定的干预措施),这将改变 CRI 对测量变量的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxime Cannesson其他文献
Maxime Cannesson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxime Cannesson', 18)}}的其他基金
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
Multidisciplinary Anesthesiology and Perioperative Medicine Research Training Program
多学科麻醉学和围手术期医学研究培训计划
- 批准号:
10556264 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
- 批准号:
10376293 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Biomedical Informatics Tools for Applied Perioperative Physiology
应用围手术期生理学的生物医学信息学工具
- 批准号:
10612383 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别:
Machine Learning of Physiological Waveforms and Electronic Health Record Data to Predict, Diagnose, and Treat Hemodynamic Instability in Surgical Patients
生理波形和电子健康记录数据的机器学习可预测、诊断和治疗手术患者的血流动力学不稳定
- 批准号:
10589931 - 财政年份:2019
- 资助金额:
$ 74.66万 - 项目类别:
相似国自然基金
室内空气中半挥发性有机物的动态行为研究:通过综合观测实验评估稳态机制模型的适用性
- 批准号:22376003
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
养殖舍空气LPS通过NLPR3途径调控鸡肺巨噬细胞焦亡的机制
- 批准号:32372930
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
为明天城市的清洁空气融资: 通过土地增值回馈确保城市可持续发展、提高城市空气质量的潜力
- 批准号:71961137006
- 批准年份:2019
- 资助金额:190 万元
- 项目类别:国际(地区)合作与交流项目
空气细颗粒物及组分暴露通过血浆miRNA表达致动脉硬化的固定群组研究
- 批准号:81803191
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
晚期氧化蛋白产物通过上调NADPH氧化酶/ROS诱导小肠上皮细胞EMT参与腹腔开放肠空气瘘形成的机制研究
- 批准号:81801952
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 74.66万 - 项目类别:
Controlling complement to unleash nanomedicine for acute critical illnesses
控制补体释放纳米药物治疗急性危重疾病
- 批准号:
10557895 - 财政年份:2022
- 资助金额:
$ 74.66万 - 项目类别:
Controlling complement to unleash nanomedicine for acute critical illnesses
控制补体释放纳米药物治疗急性危重疾病
- 批准号:
10340537 - 财政年份:2022
- 资助金额:
$ 74.66万 - 项目类别:
Portable Noninvasive Positive Airway Device for COPD Patient Therapy
用于 COPD 患者治疗的便携式无创正压气道装置
- 批准号:
10081908 - 财政年份:2020
- 资助金额:
$ 74.66万 - 项目类别: