Controlling complement to unleash nanomedicine for acute critical illnesses
控制补体释放纳米药物治疗急性危重疾病
基本信息
- 批准号:10340537
- 负责人:
- 金额:$ 62.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute Respiratory Distress SyndromeAdoptedAffectAir SacsAlveolarAlveolusAmino Acid MotifsAnaphylaxisAntibodiesArtificial nanoparticlesBindingBinding ProteinsBiological AssayBloodBlood ProteinsBlood capillariesC3biCOVID-19COVID-19 mortalityCause of DeathCellsCessation of lifeComplementComplement 3aComplement ActivationComplement Factor HComplement component C1Critical CareCritical IllnessDiseaseDrug CarriersDrug Delivery SystemsEndothelial CellsEndotheliumEngineeringFunctional disorderGenetic Complementation TestHumanHypersensitivityHypotensionImmuneIn VitroInflammatoryInjectionsKnock-outLeadLeukocytesLifeLigandsLiposomesLungMacrophage-1 AntigenMalignant NeoplasmsMeasuresMembrane ProteinsMicrobeModelingMonoclonal AntibodiesMusMyocardial InfarctionNanotechnologyNebulizerOleic AcidsOrganOutcomeOutpatientsPatientsPharmaceutical PreparationsPhenotypePhysiciansPlasmaPlasma ProteinsPlayProperdinPulmonary InflammationReactionRecombinantsReportingRoleSepsisSerumSideSpleenStrokeTechnologyTestingTherapeuticTherapeutic EffectWild Type MouseWorkantibody conjugatebaseclinical translationcomplement 3 regulatorcomplement pathwaycytokinedensitydesignexperimental studyhuman tissueimprovedin vitro testingin vivolung injurymouse modelnanocarriernanomedicinenanoparticleneutralizing antibodyneutrophilpreventreceptorside effectstandard measuretissue resourcetranslational potentialuptake
项目摘要
ABSTRACT / SUMMARY
Acute critical illnesses rapidly lead to severe organ damage and loss of life. These illnesses include
sepsis, stroke, and acute respiratory distress syndrome (ARDS). Here we focus on ARDS, which is acute
inflammation of the lungs’ air sacs, and the cause of death in COVID-19. For ARDS and these other diseases,
we have developed ligand-targeted nanocarriers that localize drugs to the inflamed microvasculature of affected
organs. As we moved towards clinical translation, we found the key step is gaining control of complement, a set
of plasma proteins that bind microbes and aid their clearance. But we found complement-nanoparticle
interactions are a “double-edged sword”, with both benefits to optimize, and deleterious features to resolve.
First, we found that complement protein C3 rapidly opsonizes particular nanoparticles, and that such C3-
opsonized nanoparticles then act as “decoys” to ameliorate ARDS mouse models (e.g., nebulized LPS) by ~75%.
The C3-coated nanoparticles accumulate in marginated leukocytes, which are key to ARDS pathophysiology,
and cause those cells to leave the lungs. However, C3 opsonization induces an anaphylaxis-like reaction called
CARPA (complement-activation-related pseudo-allergy). Therefore, in Aim 1, we will engineer nanoparticles
that can function like C3-coated decoys to ameliorate ARDS, but without CARPA. We will also investigate the
mechanism underlying nanoparticle decoy therapy. Then we will test the translational potential of these
optimized decoy nanoparticles by testing them in fresh, perfused, ex vivo human lungs.
Second, we found that the ligand-targeted nanoparticles we have been developing for drug delivery for
years also induce CARPA. Therefore, in Aim 2, we will re-engineer our ligand-targeted nanoparticles to prevent
CARPA. We will test a drug carrier we have previously used to concentrate drugs in the alveolar
microvasculature of the lungs: liposomes conjugated to anti-PECAM antibodies that bind endothelial cells. We
will test in vitro and in vivo in mice whether various engineered versions of anti-PECAM liposomes can evade
C3 opsonization and CARPA, and thereby achieve more specific delivery to the lungs. Lastly, we will test these
CARPA-avoiding nanoparticles with plasma from ARDS patients, as such patients have perturbed complement.
Upon completion of these two Aims, we will have developed two technologies that may aid therapy of
ARDS: 1) Decoy nanoparticles that safely cause marginated leukocytes to leave the lungs, and thereby
ameliorate ARDS-like phenotypes; 2) A technology for preventing complement side effects such as CARPA
when delivering ligand-targeted nanoparticles. As marginated leukocytes play pivotal roles in most acute critical
illnesses, and CARPA sensitivity is common to those as well, the technologies developed here may impact not
only ARDS, but also sepsis, stroke, and more.
摘要/总结
急性危重疾病会迅速导致严重的器官损伤和死亡。
败血症、中风和急性呼吸窘迫综合征 (ARDS) 在这里我们重点关注急性呼吸窘迫综合征 (ARDS)。
肺部气囊炎症以及 COVID-19 的死亡原因。
我们开发了配体靶向纳米载体,将药物定位到受影响的发炎微血管系统
当我们走向临床转化时,我们发现关键的一步是获得补体的控制,这是一组补体。
但我们发现了与微生物结合并帮助其清除的血浆蛋白。
交互是一把“双刃剑”,既有需要优化的好处,也有需要解决的有害功能。
首先,我们发现补体蛋白 C3 快速调理特定的纳米颗粒,并且这种 C3-
然后,调理纳米颗粒充当“诱饵”,将 ARDS 小鼠模型(例如雾化 LPS)改善约 75%。
C3 涂层纳米粒子在边缘白细胞中积聚,这是 ARDS 病理生理学的关键,
并导致这些细胞离开肺部。然而,C3 调理作用会诱发一种称为过敏反应的反应。
因此,在目标 1 中,我们将设计纳米颗粒。
它可以像 C3 涂层诱饵一样发挥作用来改善 ARDS,但没有 CARPA。
然后我们将测试这些纳米颗粒诱饵疗法的转化潜力。
通过在新鲜的、灌注的、离体人肺中测试它们来优化诱饵纳米粒子。
其次,我们发现我们一直在开发用于药物输送的配体靶向纳米颗粒
因此,在目标 2 中,我们将重新设计我们的配体靶向纳米颗粒以防止出现这种情况。
CARPA。我们将测试我们之前用于将药物浓缩在肺泡中的药物载体。
肺微血管系统:与结合内皮细胞的抗 PECAM 抗体缀合的脂质体。
将在小鼠体内和体外测试各种工程版本的抗 PECAM 脂质体是否可以逃避
C3 调理作用和 CARPA,从而实现更具体的递送到肺部最后,我们将测试这些。
避免 CARPA 的纳米颗粒与来自 ARDS 患者的血浆,因为此类患者的补体受到干扰。
完成这两个目标后,我们将开发出两项可能有助于治疗的技术
ARDS:1) 诱饵纳米颗粒安全地导致边缘白细胞离开肺部,从而
改善ARDS样表型;2)预防补体副作用的技术,例如CARPA
当递送配体靶向纳米颗粒时,边缘白细胞在最紧急的关键时刻发挥着关键作用。
的生命,并且 CARPA 敏感性对这些人来说也是常见的,这里开发的技术可能会影响不
不仅包括急性呼吸窘迫综合征,还包括败血症、中风等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Brenner其他文献
Jacob Brenner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Brenner', 18)}}的其他基金
miRNA-Nanotechnology as a novel regenerative therapy for lymphangioleiomyomatosis
miRNA-纳米技术作为淋巴管平滑肌瘤病的新型再生疗法
- 批准号:
10761353 - 财政年份:2023
- 资助金额:
$ 62.62万 - 项目类别:
The DOVE Device to Prevent Opioid Overdose Deaths: An Armband That Senses Overdose and Automatically Injects Naloxone
防止阿片类药物过量死亡的 DOVE 装置:可感应过量并自动注射纳洛酮的臂带
- 批准号:
10485568 - 财政年份:2023
- 资助金额:
$ 62.62万 - 项目类别:
Next-generation nanomedicine for acute ischemic stroke
治疗急性缺血性中风的下一代纳米药物
- 批准号:
10603229 - 财政年份:2023
- 资助金额:
$ 62.62万 - 项目类别:
Controlling complement to unleash nanomedicine for acute critical illnesses
控制补体释放纳米药物治疗急性危重疾病
- 批准号:
10557895 - 财政年份:2022
- 资助金额:
$ 62.62万 - 项目类别:
RBC-mediated mopping of cytokines for the treatment of pneumonia
红细胞介导的细胞因子清除治疗肺炎
- 批准号:
10495259 - 财政年份:2021
- 资助金额:
$ 62.62万 - 项目类别:
RBC-mediated mopping of cytokines for the treatment of pneumonia
红细胞介导的细胞因子清除治疗肺炎
- 批准号:
10353073 - 财政年份:2021
- 资助金额:
$ 62.62万 - 项目类别:
Nanomedicine for ARDS: A new paradigm to target drugs to multiple cell types within alveolar capillaries
ARDS 纳米医学:将药物靶向肺泡毛细血管内多种细胞类型的新范例
- 批准号:
10030992 - 财政年份:2020
- 资助金额:
$ 62.62万 - 项目类别:
Nanomedicine for ARDS: A new paradigm to target drugs to multiple cell types within alveolar capillaries
ARDS 纳米医学:将药物靶向肺泡毛细血管内多种细胞类型的新范例
- 批准号:
10192827 - 财政年份:2020
- 资助金额:
$ 62.62万 - 项目类别:
Nanomedicine for ARDS: A new paradigm to target drugs to multiple cell types within alveolar capillaries
ARDS 纳米医学:将药物靶向肺泡毛细血管内多种细胞类型的新范例
- 批准号:
10192827 - 财政年份:2020
- 资助金额:
$ 62.62万 - 项目类别:
相似国自然基金
Humanin通过介导线粒体代谢保护脓毒症急性呼吸窘迫综合征肺血管内皮细胞的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Nur77通过激活线粒体自噬诱导巨噬细胞M2型转化而参与调控急性呼吸窘迫综合征进程的研究
- 批准号:
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
circRNA-Hace1通过调控RNA结合蛋白G3BP2对甲型流感病毒致急性呼吸窘迫综合征肺损伤的保护作用及机制研究
- 批准号:82000023
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
OGG1通过mtDAMP/TLR-9通路调控中性粒细胞胞外杀菌网NETs生成在急性呼吸窘迫综合征中的作用和机制
- 批准号:81900083
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
特络细胞通过微小RNAs/PIK3CA激酶通路减轻急性呼吸窘迫综合征的机制研究
- 批准号:81971863
- 批准年份:2019
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Leveraging pandemic practice changes to optimize evidence-based pneumonia care
利用大流行实践的变化来优化基于证据的肺炎护理
- 批准号:
10640043 - 财政年份:2023
- 资助金额:
$ 62.62万 - 项目类别:
Targeting mechanisms activating ion-channel for preventing acute lung injury
激活离子通道的靶向机制预防急性肺损伤
- 批准号:
10659781 - 财政年份:2023
- 资助金额:
$ 62.62万 - 项目类别:
Impact of Aging on Oxysterol Regulation of Alveolar Macrophage Function during S. pneumoniae
衰老对肺炎链球菌期间肺泡巨噬细胞功能的氧甾醇调节的影响
- 批准号:
10737015 - 财政年份:2023
- 资助金额:
$ 62.62万 - 项目类别:
Roles of N-glycans on neutrophil beta2 integrins in progression of acute lung injury
N-聚糖对中性粒细胞β2整合素在急性肺损伤进展中的作用
- 批准号:
10837431 - 财政年份:2023
- 资助金额:
$ 62.62万 - 项目类别:
Roles of N-glycans on neutrophil beta2 integrins in progression of acute lung injury
N-聚糖对中性粒细胞β2整合素在急性肺损伤进展中的作用
- 批准号:
10509625 - 财政年份:2022
- 资助金额:
$ 62.62万 - 项目类别: