Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
基本信息
- 批准号:10320987
- 负责人:
- 金额:$ 44.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressBinding ProteinsBiological AssayBiological SciencesCOVID testCOVID-19 detectionCOVID-19 diagnosticCOVID-19 pandemicCOVID-19 testingCarbon NanotubesClinicalCommunicable DiseasesComplexDefectDetectionDevelopmentDevicesDiagnosisDiagnostic testsDifferential DiagnosisElectrolytesGoldHourImProvImmobilizationImmunoassayIndividualInfectionInfectious AgentInfluenzaKineticsLaboratoriesLlamaMembrane ProteinsNanotubesNew YorkNucleic Acid Amplification TestsNucleocapsid ProteinsOpticsPhasePolymerase Chain ReactionPopulation SurveillancePreparationProcessProteinsPublic HealthQuantitative Reverse Transcriptase PCRReaderReagentRecombinantsResearch PersonnelReverse TranscriptionSARS-CoV-2 transmissionSalivaSamplingSemiconductorsSensitivity and SpecificitySiteSmall Business Innovation Research GrantSpecificitySpecimenStructural ProteinSymptomsTechnologyTestingTimeTrainingTransistorsUniversitiesVaccinesViralViral Load resultViral ProteinsVirusantibody detectionantigen detectionantigen testbasebiobankbioelectronicscostdesigndiagnostic assayenv Gene Productsexperimental studyimprovedinnovationintegrated circuitmetal oxidemolecular arraymolecular diagnosticsmultiplex detectionnanobodiesparticlepathogenpoint of carepoint of care testingprogramsprotein structuresaliva samplesensorsingle moleculetemporal measurementtooltransmission processviral RNAviral detection
项目摘要
Direct bioelectronic detection of SARS-CoV-2 from saliva
using single-molecule field-effect transistor array
Nucleic acid tests have become the gold-standard for diagnostic testing for COVID-19, usually performed
in specialized laboratories. Most are based on reverse-transcription quantitative polymerase chain reaction
(qRT-PCR). The time required for specimen transport and processing results in a turnaround time that is typi-
cally several days. The few rapid (<1 hour) point-of-care (POC) tests are more expensive, still require sample
preparation and specialized reagents, and do not have the throughput needed for population surveillance. Di-
rect testing for the virus, which also reduces requirements for multiple reagents, is a necessary step to improv-
ing diagnostic testing. While four such antigen tests have been approved for detection of SARS-CoV-2 based
on immunoassays to the N protein, sensitivity is limited and no quantitation of viral load is possible.
We will address this gap by using DiagnostikosTM, an in-development rapid POC platform for direct, real-
time, multiplexed, quantitative bioelectronic detection of biomolecules that employs an all-electronic detection
device that functions at the single-molecule level. These single-molecule field-effect transistors (smFETs) are
arrayed on a complementary metal-oxide-semiconductor (CMOS) integrated circuit chip. Chips will interface
with an envisioned USB-stick-form-factor reader device. Robust single-domain antibodies, known as nanobod-
ies and immobilized on these devices, are used for sensitive detection of viral particles and viral debris. The
use of multiple nanobodies for a single protein and nanobodies for different proteins in a single assay allows
for significant improvements in specificity. Nanobodies will be specific for one or more of the four major struc-
tural proteins in SARS-CoV-2; the nucleocapsid (N) protein engulfing the viral RNA, the spike (S) protein, the
membrane (M) protein and the envelope (E) protein. No sample preparation or specialized reagents are re-
quired for detection, and the device will be designed to operate with saliva, which has very recently been
shown to be a reliable medium for detecting SARS-CoV-2. Individual sensor chips can be manufactured at a
cost of $35. With the addition of other nanobodies, these large dense arrays can also allow detection of many
pathogens in a single test.
In this Direct-To-Phase-2 SBIR program we will pursue several key innovations that are required to make
such a platform possible, including isolation of nanobodies for key structure proteins of SARS-CoV-2 (Specific
Aim 1), development of the smFET platform for antigen detection (Specific Aim 2), development of large
CMOS arrays of these smFET devices (Specific Aim 3), and verification of detection in increasingly complex
samples up to and including clinical samples (Specific Aim 4). This project is a partnership between university
researchers who developed the smFET technology and a venture-based start-up venture, Quicksilver Biosci-
ences, spun out to commercialize smFET technology and develop smFET/CMOS arrays for molecular diag-
nostic applications.
从唾液中直接生物电子检测 SARS-CoV-2
使用单分子场效应晶体管阵列
核酸检测已成为 COVID-19 诊断检测的黄金标准,通常进行
在专门的实验室。大多数基于逆转录定量聚合酶链反应
(qRT-PCR)。样本运输和处理所需的时间导致典型的周转时间
好几天。少数快速(<1 小时)即时护理 (POC) 测试更昂贵,仍然需要样本
制剂和专用试剂,并且不具备群体监测所需的通量。迪-
对病毒进行正确的检测,这也减少了对多种试剂的需求,是改进病毒检测的必要步骤。
荷兰国际集团的诊断测试。虽然四种此类抗原测试已被批准用于检测基于 SARS-CoV-2 的
N 蛋白的免疫测定的灵敏度有限,并且无法定量病毒载量。
我们将通过使用 DiagnostikosTM 来解决这一差距,这是一个正在开发的快速 POC 平台,可用于直接、真实的
采用全电子检测的生物分子的时间、多重、定量生物电子检测
在单分子水平上发挥作用的装置。这些单分子场效应晶体管 (smFET)
排列在互补金属氧化物半导体(CMOS)集成电路芯片上。芯片将接口
与设想的 USB 棒形状因素读取器设备。强大的单域抗体,称为纳米抗体
病毒颗粒和病毒碎片固定在这些设备上,用于灵敏检测病毒颗粒和病毒碎片。这
在一次测定中对单一蛋白质使用多个纳米抗体,对不同蛋白质使用纳米抗体可以实现
显着提高特异性。纳米抗体将特异性针对四种主要结构中的一种或多种
SARS-CoV-2 中的天然蛋白;吞噬病毒 RNA 的核衣壳 (N) 蛋白、刺突 (S) 蛋白、
膜(M)蛋白和包膜(E)蛋白。无需重新制备样品或专用试剂
检测所需,该设备将设计为利用唾液进行操作,最近已被
被证明是检测 SARS-CoV-2 的可靠介质。单独的传感器芯片可以在
费用为 35 美元。通过添加其他纳米抗体,这些大型密集阵列还可以检测许多
一次测试中的病原体。
在这个 Direct-To-Phase-2 SBIR 计划中,我们将追求几项关键创新,以实现
这样一个平台是可能的,包括分离 SARS-CoV-2 关键结构蛋白的纳米抗体(具体
目标1),开发用于抗原检测的smFET平台(具体目标2),开发大型
这些 smFET 器件的 CMOS 阵列(具体目标 3),以及日益复杂的检测验证
样本直至并包括临床样本(具体目标 4)。该项目是大学之间的合作伙伴关系
开发 smFET 技术的研究人员和一家基于风险投资的初创企业 Quicksilver Biosci-
ences,分拆出来将 smFET 技术商业化并开发用于分子诊断的 smFET/CMOS 阵列
诺斯提应用程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth L Shepard其他文献
Kenneth L Shepard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth L Shepard', 18)}}的其他基金
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10490475 - 财政年份:2021
- 资助金额:
$ 44.78万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10513407 - 财政年份:2021
- 资助金额:
$ 44.78万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10706320 - 财政年份:2021
- 资助金额:
$ 44.78万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10375951 - 财政年份:2021
- 资助金额:
$ 44.78万 - 项目类别:
Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
- 批准号:
10266395 - 财政年份:2020
- 资助金额:
$ 44.78万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8545205 - 财政年份:2012
- 资助金额:
$ 44.78万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8365334 - 财政年份:2012
- 资助金额:
$ 44.78万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8719765 - 财政年份:2012
- 资助金额:
$ 44.78万 - 项目类别:
Rapid Allergenic Particle Identification (RAPID)
快速过敏性颗粒识别 (RAPID)
- 批准号:
8073325 - 财政年份:2007
- 资助金额:
$ 44.78万 - 项目类别:
Rapid Allergenic Particle Identification (RAPID)
快速过敏性颗粒识别 (RAPID)
- 批准号:
7485182 - 财政年份:2007
- 资助金额:
$ 44.78万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
- 批准号:
10696610 - 财政年份:2023
- 资助金额:
$ 44.78万 - 项目类别:
Optimizing the Generation of Monoclonal Antibodies for Prevention and Treatment of HSV Disease
优化用于预防和治疗 HSV 疾病的单克隆抗体的生成
- 批准号:
10717320 - 财政年份:2023
- 资助金额:
$ 44.78万 - 项目类别:
Structure of the SARS-CoV-2 Nucleocapsid: building block to viral capsid
SARS-CoV-2 核衣壳的结构:病毒衣壳的构建模块
- 批准号:
10728253 - 财政年份:2023
- 资助金额:
$ 44.78万 - 项目类别:
Precision Glycoengineering of an HCV Envelope-Based Nanoparticle Vaccine
HCV 包膜纳米颗粒疫苗的精密糖工程
- 批准号:
10759994 - 财政年份:2023
- 资助金额:
$ 44.78万 - 项目类别:
GMP manufacturing and IND Filing of IN-002, a potent inhaled muco-trapping antibody therapy for Respiratory Syncytial Virus
IN-002 的 GMP 生产和 IND 备案,这是一种针对呼吸道合胞病毒的有效吸入粘液捕获抗体疗法
- 批准号:
10761398 - 财政年份:2023
- 资助金额:
$ 44.78万 - 项目类别: