Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
基本信息
- 批准号:10319992
- 负责人:
- 金额:$ 32.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-10 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlbers-Schonberg diseaseAmidesAmino Acid MotifsAmino Acid SubstitutionAmino AcidsAnion Transport ProteinsAnionsArchitectureBacteriaBartter DiseaseBindingBinding SitesBiochemicalBioinformaticsBiologicalBone DiseasesBrainBypassCLC GeneCarrier ProteinsCationsCell membraneChloride ChannelsChloridesCouplingDataDent DiseaseDiseaseElectrophysiology (science)ElectrostaticsEpithelialEstersEventFamilyFormulationFoundationsFunctional disorderFutureGenesGenetic DiseasesGoalsHereditary DiseaseHomologous GeneHumanHuman GenomeImpairmentInterventionInvestigationIon ChannelIonsKidneyLysosomal Storage DiseasesMalignant - descriptorMeasurementMediatingMembraneModelingMolecularMolecular ConformationMovementMuscleMuscle ContractionMutagenesisMutationMyotonia CongenitaNeuronsOrganismOutcomePathway interactionsPharmacologyPhylogenetic AnalysisPhysiologicalPhysiological ProcessesPhysiologyPlantsPotassium ChannelProcessPropertyProteinsResolutionRoleRouteSideSodium ChlorideStructureTestingTherapeuticTimeTissuesVertebral columnX-Ray Crystallographyantiportbasecomputerized toolsdesigndisease-causing mutationexperimental studyflexibilityinnovationmolecular dynamicsnovelprotein functionrational designreconstructionsimulation
项目摘要
ABSTRACT
The CLC channels and transporters mediate anion transport through biological membranes. Genes encoding
for CLC proteins are found in nearly all organisms, from bacteria to plants and humans. Mutations altering the
properties of five of the nine human genes encoding for CLC homologues result in genetic disorders of bone,
kidney, brain and muscle, highlighting the fundamental role of these proteins in a wide variety of tissues and
cellular compartments. Despite their pathophysiological importance, our understanding of how these proteins
function lagged far behind many other classes of ion channels and exchangers. This limits our ability to
interpret their function in human physiology and to design targeted pharmacological interventions that would
selectively manipulate their activity. Thus, our long-term goal is to elucidate the atomic basis for CLC Cl-
channel and transporter function. Our proposal is articulated in three specific aims, each of which addresses a
fundamental unanswered mechanistic question on CLC function. Our innovative use of synergistic
experimental and computational approaches enables the formulation of specific hypotheses and their rigorous
testing. In the first Aim we will determine the bases of substrate selectivity in the CLC Cl- channels. While
selectivity of cation channels is well understood, nearly nothing is known on anion selectivity. We will probe the
role of the protein backbone in this process using atomic-scale mutagenesis and will determine the
consequences of these manipulations through structural, electrophysiological and computational experiments.
Our second aim is to elucidate the coupling mechanism in the CLC exchangers. The CLC transporters
exchange 2 Cl- for 1 H+ across biological membranes. Several disease-causing mutations affect this process
through unknown mechanisms. Our goal is to elucidate the basis for Cl-/H+ coupling in the CLCs. We will utilize
computational tools in conjunction to conventional and atomic mutagenesis to probe the dynamic
rearrangements undergone by the protein to enable the formation of a pathway for H+ that is physically distinct
from the route taken by the Cl- ions. The third aim is to determine the molecular origin of the functional
divergence of the CLC channels from the transporters. Despite the availability of high resolution structural
information for both subtypes, the molecular origin of this functional divergence remains unknown. We will use
statistical phylogenetics and evolutionary bioinformatics to identify the most likely evolutionary sequence of
events leading to the functional divergence. We will then functionally characterize sequences recapitulating
these key evolutionary steps and use this information to identify a subset of amino acid substitutions necessary
to enact the functional switch. Ultimately, these efforts will lead to new molecular and conceptual framework for
the understanding of CLC function, which will enable the design of approaches for the amelioration of the
disease conditions caused by the dysfunction of these proteins.
抽象的
CLC 通道和转运蛋白介导阴离子通过生物膜的转运。基因编码
CLC 蛋白几乎存在于所有生物体中,从细菌到植物和人类。突变改变了
编码 CLC 同源物的九个人类基因中的五个的特性导致骨遗传疾病,
肾脏、大脑和肌肉,强调了这些蛋白质在多种组织中的基本作用
细胞室。尽管它们具有病理生理学的重要性,但我们对这些蛋白质如何
功能远远落后于许多其他类别的离子通道和交换器。这限制了我们的能力
解释它们在人体生理学中的功能并设计有针对性的药理学干预措施
有选择地操纵他们的活动。因此,我们的长期目标是阐明 CLC Cl- 的原子基础
通道和转运功能。我们的提案阐述了三个具体目标,每个目标都涉及一个
关于 CLC 功能的基本未解答的机制问题。我们创新地利用协同效应
实验和计算方法能够制定具体的假设及其严格的假设
测试。在第一个目标中,我们将确定 CLC Cl- 通道中底物选择性的基础。尽管
阳离子通道的选择性是众所周知的,但阴离子选择性几乎一无所知。我们将探究
蛋白质主链在此过程中使用原子级诱变的作用,并将决定
通过结构、电生理学和计算实验来分析这些操作的后果。
我们的第二个目标是阐明 CLC 交换器中的耦合机制。 CLC转运蛋白
跨生物膜将 2 个 Cl- 交换为 1 个 H+。几种致病突变会影响这一过程
通过未知的机制。我们的目标是阐明 CLC 中 Cl-/H+ 耦合的基础。我们将利用
计算工具结合常规和原子诱变来探测动态
蛋白质进行重排,形成物理上不同的 H+ 通路
来自Cl-离子所走的路线。第三个目标是确定功能性物质的分子起源。
CLC 通道与转运蛋白的分歧。尽管有高分辨率的结构
尽管关于这两种亚型的信息,这种功能差异的分子起源仍然未知。我们将使用
统计系统发育学和进化生物信息学,以确定最可能的进化序列
导致功能分歧的事件。然后我们将从功能上表征序列重演
这些关键的进化步骤,并使用这些信息来识别必要的氨基酸取代的子集
执行功能开关。最终,这些努力将带来新的分子和概念框架
对 CLC 功能的理解,这将有助于设计改善
由这些蛋白质功能障碍引起的疾病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Not so transport incompetent after all: Revisiting a CLC-7 mutant sheds new mechanistic light on lysosomal physiology.
毕竟运输能力并不是那么差:重新审视 CLC-7 突变体为溶酶体生理学提供了新的机制启示。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Accardi; Alessio
- 通讯作者:Alessio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessio Accardi其他文献
Alessio Accardi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessio Accardi', 18)}}的其他基金
Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
- 批准号:
10083219 - 财政年份:2019
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
8860199 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10170367 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
9238783 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
8728513 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10624809 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10624809 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10406928 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
Ca2+-dependent lipid scrambling and ion transport by TMEM16 proteins
TMEM16 蛋白的 Ca2 依赖性脂质扰乱和离子传输
- 批准号:
10798983 - 财政年份:2014
- 资助金额:
$ 32.35万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A new model for spatio-temporal coupling of bone formation and bone resorption governed by osteoclasts
破骨细胞控制的骨形成和骨吸收时空耦合的新模型
- 批准号:
10905262 - 财政年份:2020
- 资助金额:
$ 32.35万 - 项目类别:
A new model for spatio-temporal coupling of bone formation and bone resorption governed by osteoclasts
破骨细胞控制的骨形成和骨吸收时空耦合的新模型
- 批准号:
10082528 - 财政年份:2020
- 资助金额:
$ 32.35万 - 项目类别:
A new model for spatio-temporal coupling of bone formation and bone resorption governed by osteoclasts
破骨细胞控制的骨形成和骨吸收时空耦合的新模型
- 批准号:
10249332 - 财政年份:2020
- 资助金额:
$ 32.35万 - 项目类别:
Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
- 批准号:
10083219 - 财政年份:2019
- 资助金额:
$ 32.35万 - 项目类别: