Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
基本信息
- 批准号:10318291
- 负责人:
- 金额:$ 7.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdoptionAreaAwardClinicalCommittee MembersCustomDataDiagnosisDiseaseEnsureFeedbackFocus GroupsFutureGenomic medicineGenomicsGoalsHealthHealth PersonnelHealth systemHealthcareIndividualInfrastructureInstitutionInstitutional PolicyLearningModelingMotionNational Human Genome Research InstituteOutcomePatientsPersonsPharmacy and Therapeutics CommitteePreventionProcessRecommendationResearchResearch MethodologyRiskRoleScienceStructureSurveysSystemTest ResultTestingTimeTime and Motion StudiesVisionWorkadverse drug reactionbaseclinical careclinical decision supportcomputerized toolsdashboarddesignevidence basegenetic makeupgenomic datahealth care settingsimplementation scienceimprovedinnovationinterestmeetingspreferenceprogramsprovider adoptionresearch studysocialusability
项目摘要
PROJECT SUMMARY
As healthy individuals increasingly can receive genomic testing results that indicate their risk for poor outcomes
(e.g. diseases or adverse drug reactions), healthcare providers will need to ensure that the results are handled
prudently, by addressing the receipt of the results, the workflow challenges, and liability issues. Given that clinical
genomic tests can be initiated outside of the clinical setting (e.g., in a research study), from the clinician’s
perspective, they can be characterized as unsolicited genomic results (UGR). Clinical decision support (CDS)
has great potential to ease the adoption of UGR by providing clinicians with recommendations and patient-related
information presented at particular times to enhance clinical care. Deploying CDS for UGR in a healthcare setting
in a scalable way, however, will depend on our capacity to leverage local institutional policy and oversight
structures to approve of CDS guidance and strategies for UGR. The specific objective of this research program
is to develop and evaluate the Evidence-based Decision support Implementation over Time (EDIT) model
for prioritizing and revising deployed CDS for UGR. The EDIT model will empower local oversight committees
such as Pharmacy & Therapeutics committees to have a role in the CDS review and deployment processes
within existing institutional social systems using accepted organizational processes. The direct benefits of this
work will be an EDIT dashboard that can be used by oversight committees to prioritize new and to revise
deployed CDS, and infrastructure to close the loop of the learning health system by transferring CDS revisions
approved by oversight committee members into deployed CDS for UGR. EDIT model implementation will be
informed by mixed methods research strategies: Strategy 1, we will conduct focus groups with oversight
committee members in order to understand current roles, tasks and goals of the committee, as well as to capture
opinions about the best processes to prioritize, review and approve of new and revised CDS for UGR as part of
committee meeting activities. Research Strategy 2, we will conduct a survey study with patients to assess
preferences for the return of UGR with CDS and usability studies with oversight committee members to gather
feedback on the EDIT dashboard design. Strategy 3, we will conduct time-motion observations of local oversight
committee meetings prior to and after deploying the EDIT model in order to plan a future, multi-institution, time-
motion study with statistical power to detect differences between oversight committees that use the EDIT
dashboard and those that do not. The hypothesis is that time spent prioritizing new and revised CDS will be
shorter with use of the EDIT dashboard. Overall, the EDIT model establishes processes that lower barriers to
implementing robust genomic medicine programs that can be followed by others. The Genomic Innovator Award
will enable me to study, in team-science projects, how the EDIT model can accelerate the institutional review
and approval process of CDS for UGR. The broader impact of this work is being able to study rate of UGR
adoption by healthcare providers for deployed CDS for UGR.
项目概要
随着健康个体越来越多地获得基因组检测结果,表明他们出现不良结果的风险
(例如疾病或药物不良反应),医疗保健提供者需要确保结果得到处理
谨慎地,通过解决结果的接收、工作流程挑战和责任问题。
基因组测试可以在临床环境之外(例如,在研究中)从临床医生的角度启动
从角度来看,它们可以被描述为主动提供的基因组结果(UGR)。
通过向人群提供建议和患者相关信息,有巨大的潜力来简化 UGR 的采用
在特定时间提供的信息,以加强在医疗保健环境中部署 UGR 的 CDS。
然而,以可扩展的方式将取决于我们利用当地机构政策和监督的能力
批准 CDS 指导和 UGR 策略的结构 该研究计划的具体目标。
是开发和评估循证决策支持随时间实施 (EDIT) 模型
用于对 UGR 部署的 CDS 进行优先级排序和修订 EDIT 模型将赋予地方监督委员会权力。
例如药学和治疗委员会在 CDS 审查和部署流程中发挥作用
使用公认的组织流程的现有制度社会系统 这样做的直接好处。
工作将是一个编辑仪表板,监督委员会可以使用它来确定新内容的优先顺序并进行修改
部署 CDS 和基础设施,通过传输 CDS 修订来关闭学习健康系统的循环
由监督委员会成员批准进入已部署的 CDS 以进行 EDIT 模型实施。
混合方法研究策略:策略 1,我们将在监督下开展焦点小组活动
委员会成员,以了解委员会当前的角色、任务和目标,并了解
关于优先考虑、审查和批准 UGR 新的和修订的 CDS 的最佳流程的意见,作为
委员会会议活动研究策略2,我们将与患者进行调查研究以评估。
与监督委员会成员一起收集 CDS 和可用性研究中 UGR 回归的偏好
关于 EDIT 仪表板设计的反馈策略 3,我们将对本地监督进行时间动态观察。
在部署 EDIT 模型之前和之后召开委员会会议,以便规划未来的、多机构的、时间-
具有统计能力的运动研究,可以检测使用编辑的监督委员会之间的差异
假设是,花在优先考虑新的和修订的 CDS 上的时间将会减少。
总体来说,EDIT 模型建立的流程可以降低障碍。
实施可供其他人效仿的强大基因组医学计划。
将使我能够在团队科学项目中研究 EDIT 模型如何加速机构审查
这项工作的更广泛影响是能够研究 UGR 的比率。
医疗保健提供商采用为 UGR 部署 CDS。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CASEY OVERBY TAYLOR其他文献
CASEY OVERBY TAYLOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CASEY OVERBY TAYLOR', 18)}}的其他基金
Real-World Data Estimates of Racial Fairness with Pharmacogenomics-Guided Drug Policy
以药物基因组学为指导的药物政策对种族公平性的真实世界数据估计
- 批准号:
10797705 - 财政年份:2023
- 资助金额:
$ 7.39万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10436990 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10251062 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10606011 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Clinical Decision Support for Unsolicited Genomic Results
主动提供的基因组结果的临床决策支持
- 批准号:
10672256 - 财政年份:2020
- 资助金额:
$ 7.39万 - 项目类别:
Electronic Health Record-linked Decision Support for Communicating Genomic Data t
与电子健康记录相关的决策支持,用于交流基因组数据
- 批准号:
8772968 - 财政年份:2014
- 资助金额:
$ 7.39万 - 项目类别:
Electronic Health Record-linked Decision Support for Communicating Genomic Data t
与电子健康记录相关的决策支持,用于交流基因组数据
- 批准号:
8930122 - 财政年份:2014
- 资助金额:
$ 7.39万 - 项目类别:
相似国自然基金
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
- 批准号:82300039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A6通过调控ZNF750组蛋白甲基化促进糖尿病角质形成细胞分化障碍的机制研究
- 批准号:82302802
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤相关成纤维细胞通过CCL5/CCR5轴促进神经内分泌前列腺癌顺铂耐药的机制研究
- 批准号:82373358
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鼻腔共生表皮葡萄球菌通过抗菌肽-moDC-CCL17通路抑制过敏性鼻炎的分子机制
- 批准号:82302595
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 7.39万 - 项目类别:
Dissemination of the Human Neocortical Neurosolver (HNN) software for circuit level interpretation of human MEG/EEG
传播用于人类 MEG/EEG 电路级解释的人类新皮质神经解算器 (HNN) 软件
- 批准号:
10726032 - 财政年份:2023
- 资助金额:
$ 7.39万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 7.39万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 7.39万 - 项目类别: