Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
基本信息
- 批准号:10312792
- 负责人:
- 金额:$ 7.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAdmixtureAffectAgonistArrhythmiaBiologicalBiological ModelsBiomechanicsBiomedical EngineeringBiophysicsCalciumCardiacCardiac MyocytesCardiomyopathiesCell Culture TechniquesCellsClassificationClinical TrialsContractile ProteinsContractile SystemContractsCustomDataDefectDependenceDevelopmentDilated CardiomyopathyDiseaseElastomersEngineeringEventExhibitsFibroblastsFilamentFunctional disorderFutureGene MutationGenerationsGenesGeneticGenetic ModelsGenetic VariationGenotypeHeartHeart ContractilitiesHeart failureHumanHydrogelsHypertrophic CardiomyopathyIn VitroIndividualLabelLaboratory StudyLeadLinkMeasuresMethodologyMethodsMicrofilamentsModelingMusMuscleMuscle FibersMutationMyocardial tissueMyocardiumMyosin ATPasePathologyPatientsPatternPharmacological TreatmentPharmacologyPhenotypePhysiologicalPopulationRNARegulationRelaxationReportingResolutionRodent ModelSarcomeresStressSubgroupSudden DeathSystemTechniquesTechnologyTestingThickThick FilamentThin FilamentThinnessTimeTissuesTraction Force MicroscopyTransfectionVariantWorkloadantagonistbiophysical modelcohortgenetic variantimprovedin vivoin vivo Modelindividual responseinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinherited cardiomyopathyinhibitormutantnew technologynovelphysiologic modelprecision medicinepredicting responsereconstitutionresponsestem cellstooltreatment responsetwo-dimensionalvariant of unknown significance
项目摘要
ABSTRACT
Cardiomyopathies, including hypertrophic (HCM) and dilated (DCM) cardiomyopathy, are conditions in which
heart muscle dysfunction may lead to arrhythmias and heart failure. Cardiomyopathies are most commonly
caused by variants in sarcomere genes that encode contractile proteins. The immediate effect of these genetic
variants is perturbation of contractile function. However, a clear understanding of how the thousands of different
variants in individual sarcomere genes differentially affect contractile function to cause HCM and DCM has not
been attained. Furthermore, traditional systems have not been able to efficiently study the interaction between
genetic variants affecting contractile function and varying levels of biomechanical workload that models the in
vivo state. Cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) are a promising model
system that allow the study of HCM- and DCM-causing mutations in a human cell context, but the capacity of
this model system for contractile analysis has been limited because of technical and biologic hurdles. My
preliminary data shows that an optimized bioengineered platform enables generation of contracting micrometer-
scale 2-dimensional heart muscle tissues (referred to as M2D) on an elastomer substrate. M2D tissues exhibit
coordinated, uniaxial contraction, robust myofibrillar alignment, and expected responses to contractile
agonists/antagonists. In addition, my preliminary data shows that the M2D tissues are amenable to modified
RNA transfection, enabling >90% mutant replacement of contractile proteins. I hypothesize that the M2D
technology will enable mechanistic determination of dysregulated contractile velocity and workload relationships
in cardiomyopathy patient iPSCMs compared to controls, and, moreover, that these analyses will enable
subclassification of contractile defects due to thick vs. thin filament mutations that will predict responses to
pharmacologic modulation of contractile function. The first aim tests the capacity of the M2D system to
discriminate contractile dysregulation in patient iPSCM muscle tissues with thick (MYH7, MYBPC3) vs thin
(TNNT2) filament sarcomere gene variants in a total of 10 patient iPSC lines, as compared to controls. Modified
RNA transfections will be used as additional models since we are able to achieve very high transfection
efficiencies in the M2D system. Both myofibrillar alignment and contractile function will be quantified using
custom analysis tools. Sensitivity of contractile function to calcium concentration will also be assessed in both
patient and control muscle tissues. The second aim will test whether thick vs. thin filament variant iPSCMs have
a differential reversal of contractile dysregulation with the myosin inhibitor Myk-461. The implementation of the
M2D technology to interrogate contractile function in the presence of sarcomere gene variants will be
transformative for precision analysis of patient-specific heart muscle cells by enabling analysis of contractile
phenotypes in a physiologic microenvironment with tunable workload. In addition, the implementation of this
novel technology will be a major strategy to bridge from my K08 to future R01 proposals.
抽象的
心肌病,包括肥厚型心肌病 (HCM) 和扩张型心肌病 (DCM),是以下病症:
心肌功能障碍可能导致心律失常和心力衰竭。心肌病最常见
由编码收缩蛋白的肌节基因变异引起。这些基因的直接影响
变异是收缩功能的扰动。然而,清楚地了解数以千计的不同
个别肌节基因的变异对收缩功能的影响不同,导致 HCM 和 DCM 没有
已达到。此外,传统系统无法有效地研究之间的相互作用。
影响收缩功能和不同水平的生物力学工作负荷的遗传变异模拟了
体内状态。诱导多能干细胞(iPSC-CM)分化的心肌细胞是一种有前途的模型
系统允许在人类细胞环境中研究引起 HCM 和 DCM 的突变,但
由于技术和生物学障碍,这种用于收缩分析的模型系统受到限制。我的
初步数据表明,优化的生物工程平台能够生成收缩微米-
在弹性体基底上缩放二维心肌组织(称为 M2D)。 M2D组织展览
协调的单轴收缩、强大的肌原纤维排列以及对收缩的预期反应
激动剂/拮抗剂。此外,我的初步数据表明 M2D 组织适合修改
RNA 转染,可实现 >90% 的收缩蛋白突变替换。我假设M2D
技术将能够机械地确定失调的收缩速度和工作量关系
与对照组相比,心肌病患者 iPSCM 的研究结果表明,这些分析将使
由于粗丝与细丝突变引起的收缩缺陷的子分类将预测对
收缩功能的药理调节。第一个目标测试 M2D 系统的能力
区分厚(MYH7、MYBPC3)与薄的 iPSCM 患者肌肉组织的收缩失调
与对照相比,总共 10 个患者 iPSC 系中的 (TNNT2) 丝肌节基因变异。修改的
RNA 转染将用作附加模型,因为我们能够实现非常高的转染
M2D 系统的效率。肌原纤维排列和收缩功能都将使用量化
自定义分析工具。收缩功能对钙浓度的敏感性也将在两者中进行评估
患者和控制肌肉组织。第二个目标将测试粗丝与细丝变体 iPSCM 是否具有
肌球蛋白抑制剂 Myk-461 可以差异性逆转收缩失调。实施
M2D 技术将在存在肌节基因变异的情况下询问收缩功能
通过分析收缩力,实现对患者特异性心肌细胞的精确分析的变革
具有可调节工作量的生理微环境中的表型。此外,本办法的实施
新技术将是连接我的 K08 和未来 R01 提案的主要策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM S HELMS其他文献
ADAM S HELMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM S HELMS', 18)}}的其他基金
Dissection and Rescue of Mechanical and Transcriptional Defects in Desmoplakin Cardiomyopathy
桥粒斑蛋白心肌病机械和转录缺陷的剖析和挽救
- 批准号:
10181155 - 财政年份:2021
- 资助金额:
$ 7.8万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9321380 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9178315 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Discovery of the 6p21.3 Reading Disability Gene
6p21.3 阅读障碍基因的发现
- 批准号:
7878589 - 财政年份:2003
- 资助金额:
$ 7.8万 - 项目类别:
Discovery of the 6p21.3 Reading Disability Gene
6p21.3 阅读障碍基因的发现
- 批准号:
7466283 - 财政年份:2003
- 资助金额:
$ 7.8万 - 项目类别:
Discovery of the 6p21.3 Reading Disability Gene
6p21.3 阅读障碍基因的发现
- 批准号:
7565982 - 财政年份:2003
- 资助金额:
$ 7.8万 - 项目类别: