Dissection and Rescue of Mechanical and Transcriptional Defects in Desmoplakin Cardiomyopathy
桥粒斑蛋白心肌病机械和转录缺陷的剖析和挽救
基本信息
- 批准号:10181155
- 负责人:
- 金额:$ 47.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:ArrhythmiaBiomechanicsBiomedical EngineeringCRISPR/Cas technologyCalciumCardiacCardiac MyocytesCardiomyopathiesCharacteristicsClinicalComplexDataDefectDependovirusDevelopmentDilated CardiomyopathyDiseaseDissectionDoseEngineeringExhibitsFailureFibrosisFunctional disorderGenesGeneticGenetic TranscriptionGeometryHeartHeart InjuriesHeart failureHumanImpairmentIn VitroInflammatory ResponseInjuryIntercalated discIntercellular JunctionsLeadLeftLinkMechanical StressMechanicsMembraneMessenger RNAMethodsMorbidity - disease rateMusMuscleMutationMyocardial dysfunctionMyocardial tissueMyocardiumPathogenesisPathologyPathway interactionsPatientsPharmaceutical PreparationsPhasePlant RootsPlayPre-Clinical ModelPredispositionPreventiveProteinsRepressionRoleStressStretchingStructural ProteinStructureSubcategorySystemTestingTissue ModelTissuesTranscription CoactivatorTranscriptional ActivationTranslatingVariantVentricularVentricular ArrhythmiaVirusWorkWorkloadarrhythmogenic cardiomyopathybaseclinical translationcoronary fibrosiscytokinedesmoplakinexperimental studygene replacement therapygene therapygenetic varianthigh riskin vivoin vivo evaluationinduced pluripotent stem cellinjury and repairinsightloss of functionmRNA Expressionmortalitymouse modelnovelnovel therapeutic interventionpersonalized medicinepreventpromoterrepairedresilienceresponseresponse to injuryrestorationstem cell modelstoichiometrytooltreatment strategy
项目摘要
Abstract:
Variants in the gene desmoplakin (DSP) are one of the more common genetic causes of dilated
cardiomyopathy. DSP variants cause an arrhythmogenic form of cardiomyopathy that can lead to both lethal
ventricular arrhythmias and progressive heart failure, and no treatments are available. DSP encodes a critical
structural protein that transduces force from the contractile machinery to intercellular junctions. Prior work has
demonstrated the DSP cardiomyopathy is almost always caused by truncating genetic variants that cause a
loss of function through reduced DSP mRNA abundance. Distinct to DSP cardiomyopathy, these truncating
variants cause cardiac fibrosis to develop early in the disease course, preceding development of left ventricular
systolic dysfunction. Based on the rationale that fibrosis occurs due to the cardiac injury-repair response, we
hypothesize that reduced DSP abundance due to truncating mutations renders heart muscle tissue
susceptible to injury and fibrotic repair due to an incapacity to normally handle the cardiac workload. Our
primary objective is to test this mechanism in vitro and in vivo while also building evidence in pre-clinical
models for novel treatment strategies that can be used in patients to prevent cardiac injury in DSP patients.
Our specific aims will test the following specific hypothesis: (Aim 1) biomechanical stress induced
cardiomyocyte damage is a consequence of DSP genetic variants that can be reduced through contractile
inhibition as an upstream preventive approach; (Aim 2) loss of function consequences of DSP variants can be
completely abrogated through transcriptional rescue of DSP expression. To rigorously examine relationships
between biomechanical stress and injury in DSP cardiomyopathy, we will utilize two in vitro bioengineered
cardiac muscle tissue platforms that leverage induced pluripotent stem cells (iPSCs) derived from DSP
patients. Further, contractile antagonists will be tested as an in vivo preventive approach in a mouse model of
DSP cardiomyopathy. Although seemingly paradoxical, these experiments will test whether inhibitory
contractile modulation using re-purposed drugs is actually preventive to the development of fibrotic remodeling
in DSP cardiomyopathy by reducing biomechanical strain at the cardiomyocyte level. In parallel, we will use
these same in vitro and in vivo systems to dissect the relationships between DSP mRNA reduction and
impaired biomechanical injury response. CRISPR-Cas9 tools that enable activation and repression of
endogenous mRNA expression will be targeted to the DSP promoter. CRISPR-Cas9 activation will be tested in
vivo with adeno-associated virus as a novel gene therapy approach with high potential for clinical translation.
Taken together, this proposal will yield fundamental insights into the mechanisms by which DSP loss of
function genetic variants cause cardiomyocyte injury and fibrosis while directly translating clinical observations
towards two novel therapeutic approaches.
抽象的:
桥粒斑蛋白 (DSP) 基因的变异是扩张性扩张最常见的遗传原因之一。
心肌病。 DSP 变异会导致心律失常形式的心肌病,从而导致致命的死亡
室性心律失常和进行性心力衰竭,目前尚无治疗方法。 DSP 编码关键
将力从收缩机制转导至细胞间连接的结构蛋白。之前的工作有
证明 DSP 心肌病几乎总是由截短基因变异引起,这些变异会导致
通过减少 DSP mRNA 丰度而丧失功能。与 DSP 心肌病不同,这些截短
变异导致心脏纤维化在病程早期发生,先于左心室的发育
收缩功能障碍。基于心脏损伤修复反应导致纤维化发生的基本原理,我们
假设由于截短突变导致 DSP 丰度减少,导致心肌组织
由于无法正常处理心脏负荷,容易受到损伤和纤维化修复。我们的
主要目标是在体外和体内测试这种机制,同时也在临床前建立证据
可用于预防 DSP 患者心脏损伤的新型治疗策略模型。
我们的具体目标将检验以下具体假设:(目标 1)生物力学应力诱导
心肌细胞损伤是 DSP 基因变异的结果,可以通过收缩来减少
抑制作为上游预防方法; (目标 2)DSP 变体的功能丧失后果可能是
通过 DSP 表达的转录拯救完全消除。严格审视关系
为了研究 DSP 心肌病的生物力学应激和损伤之间的关系,我们将利用两种体外生物工程技术
利用 DSP 衍生的诱导多能干细胞 (iPSC) 的心肌组织平台
患者。此外,收缩拮抗剂将作为体内预防方法在小鼠模型中进行测试
DSP心肌病。尽管看似自相矛盾,但这些实验将测试抑制性是否
使用重新利用的药物进行收缩调节实际上可以预防纤维化重塑的发展
通过减少心肌细胞水平的生物力学应变来治疗 DSP 心肌病。同时,我们将使用
这些相同的体外和体内系统来剖析 DSP mRNA 减少和
生物力学损伤反应受损。 CRISPR-Cas9 工具可激活和抑制
内源 mRNA 表达将靶向 DSP 启动子。 CRISPR-Cas9 激活将在
体内腺相关病毒作为一种新型基因治疗方法,具有很高的临床转化潜力。
总而言之,该提案将对 DSP 丢失的机制产生基本的见解。
功能遗传变异导致心肌细胞损伤和纤维化,同时直接转化临床观察结果
两种新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ADAM S HELMS其他文献
ADAM S HELMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ADAM S HELMS', 18)}}的其他基金
Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
- 批准号:
10312792 - 财政年份:2020
- 资助金额:
$ 47.83万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9321380 - 财政年份:2016
- 资助金额:
$ 47.83万 - 项目类别:
Genome-Engineered Stem Cell Models to Determine Disease Mechanisms in MYBPC3 Hypertrophic Cardiomyopathy
基因组工程干细胞模型确定 MYBPC3 肥厚性心肌病的疾病机制
- 批准号:
9178315 - 财政年份:2016
- 资助金额:
$ 47.83万 - 项目类别:
相似国自然基金
基于OpenSIM姿势仿真生物力学的腰背部肌肉疲劳预警及干预研究
- 批准号:82373549
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TG2调控白血病干细胞的生物力学特性及干性维持
- 批准号:82370159
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
玉米密植高产群体抗倒伏生物力学基础与光氮协同高效生理生态机制定量化解析
- 批准号:32330075
- 批准年份:2023
- 资助金额:216 万元
- 项目类别:重点项目
多模态磁共振早期评价主动脉腔内修复术后生物力学环境改变介导的左室不良重构
- 批准号:82302152
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
渐进式负荷训练对疲劳诱导的跟腱生物力学机制研究
- 批准号:12302416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the Role of Biomechanical Strain in Atrial Physiology and Arrhythmias
阐明生物力学应变在心房生理和心律失常中的作用
- 批准号:
10750632 - 财政年份:2023
- 资助金额:
$ 47.83万 - 项目类别:
Bioprinted Human Ventricles for In Vitro Modeling of Cardiac Arrhythmias
用于心律失常体外建模的生物打印人心室
- 批准号:
10325795 - 财政年份:2021
- 资助金额:
$ 47.83万 - 项目类别:
Platform for high-throughput biomechanical measurements using metallic islands on boron nitride nanosheets
使用氮化硼纳米片上的金属岛进行高通量生物力学测量的平台
- 批准号:
10158533 - 财政年份:2020
- 资助金额:
$ 47.83万 - 项目类别:
Development of a high throughput microtissue model for integrative analysis of contractile function and biomechanical stress in iPSC-derived cardiomyocytes
开发高通量微组织模型,用于综合分析 iPSC 衍生心肌细胞的收缩功能和生物力学应激
- 批准号:
10312792 - 财政年份:2020
- 资助金额:
$ 47.83万 - 项目类别:
Myocardial remuscularization by cardiac patch delivery of epicardial FSTL1 and CCND2 overexpressing cardiomyocytes
通过心脏补片递送心外膜 FSTL1 和 CCND2 过表达心肌细胞进行心肌再肌化
- 批准号:
10375894 - 财政年份:2016
- 资助金额:
$ 47.83万 - 项目类别: