High-throughput Optimization of Polymeric Nanoparticles for Small RNA Delivery to Treat Glioblastoma
用于治疗胶质母细胞瘤的小 RNA 递送的聚合物纳米颗粒的高通量优化
基本信息
- 批准号:10314020
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-06 至 2021-07-07
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAftercareBiocompatible MaterialsBiological AssayBlood - brain barrier anatomyBypassCell CommunicationCell modelCellsCerebrospinal FluidChemotherapy and/or radiationClinical TrialsDataDiagnosisDiffuseDiffusionDrug Delivery SystemsEngineeringEnvironmentEpigenetic ProcessEstersExcisionFormulationGenerationsGeneticGlioblastomaGroup StructureHeterogeneityHumanIn VitroInfiltrationKnowledgeLibrariesMalignant NeoplasmsMalignant neoplasm of brainMediatingMethodsMicroRNAsMusNeuraxisNeuronsOperative Surgical ProceduresPathway interactionsPatientsPenetrationPerformancePermeabilityPhenotypePolymer ChemistryPolymersPropertyPumpRNA deliveryRecurrenceReporter GenesResearchSignal TransductionSmall Interfering RNASmall RNASpecificityStructureStructure-Activity RelationshipSurfaceSystemTechniquesTechnologyTherapeuticTumor BurdenTumor TissueUnited StatesUntranslated RNAValidationWorkXenograft procedureaggressive therapybasebiodegradable polymerbrain tissuecancer cellcancer diagnosiscell typeclinical applicationclinical translationclinically translatablecolloidal nanoparticlecombinatorialdesignexperimental studygene therapyhigh throughput screeninghuman modelimprovedin vitro Assayin vivoinnovationinsightknock-downmigrationnanomedicinenanoparticlenanoparticle deliveryneoplastic cellnext generationnovelnovel therapeutic interventionscreeningself-renewalsurface coatingtargeted treatmenttherapeutic nanoparticlestumortumor growthtumorigenesisuptake
项目摘要
Nearly 50,000 new cases of glioblastoma (GBM) are diagnosed in the United States each year, with a dismal
median survival of 14.6 months. Currently available therapeutics are largely ineffective due to the genetic,
epigenetic, and signaling heterogeneity within the GBM tumor. Non-coding small RNAs such as short
interfering RNA and micro-RNA are emerging as potent epigenetic regulators of cell fate and oncogenesis, and
represent a promising tailored therapeutic strategy to counter tumor cell heterogeneity. However, clinical
translation of small RNAs has been limited by significant knowledge gaps regarding their safe and effective
delivery to GBM cells. The overall objective of this study is to use high-throughput screening approaches to
optimize poly(beta-amino ester) (PBAE) polymeric nanoparticles for therapeutic small RNA delivery to treat
GBM. Our preliminary data have shown that 1st generation PBAE materials enabled small RNA delivery to
inhibit GBM proliferative phenotype in vitro and significantly slowed GBM tumor growth in GBM xenografts in
vivo. However, these nanoparticles need to be optimized in delivery efficiency, biomaterial-mediated tumor
targeting, long-term nanoparticle colloidal stability, and permeation throughout the tumor bulk to further their
clinical translatability. To develop optimized 2nd generation PBAE nanoparticle formulations, the proposed work
will utilize novel high-throughput approaches to generate polymer structural diversity and screen hundreds of
unique polymer structures in parallel to identify delivery materials of improved potency and cancer targeting. In
Aim 1, innovative in vitro assays examining nanoparticle performance in overcoming critical intracellular
delivery barriers such as nanoparticle uptake and endosomal escape will be performed in primary patient-
derived GBM cell models to better predict nanoparticle performance in vivo. Furthermore, these assays will
yield important structure-functional relationships on how biomaterial structures can be altered to control their
interactions with cells in a cancer-selective manner. In Aim 2, nanoparticle surface engineering techniques will
be employed to enhance nanoparticle stability and tumor penetration capabilities. Orthotopic GBM tumor
bearing mice will be treated with optimized nanoparticle formulations to characterize nanoparticle diffusion
throughout the tumor bulk. This is critical in achieving uniform nanoparticle delivery as well as in reaching
infiltrative GBM cells at the tumor periphery, which are primarily responsible for tumor recurrence after
treatment. Finally, in Aim 3, nanoparticles carrying two GBM-inhibiting micro-RNAs will be evaluated for their
ability to reduce GBM proliferation and self-renewal. State of the art primary human GBM cell models will be
used to assess nanoparticle-induced phenotypic changes in vitro, and nanoparticles will also be infused into
tumor-bearing mice to assess therapeutic delivery in the 3D tumor environment in vivo. These findings will
have substantial positive impact on developing a scalable, bio-degradable small RNA delivery system to treat
brain cancer.
美国每年诊断出近 50,000 例胶质母细胞瘤 (GBM) 新病例,病情惨重
中位生存期为 14.6 个月。由于遗传、
GBM 肿瘤内的表观遗传和信号异质性。非编码小RNA,例如短RNA
干扰RNA和微小RNA正在成为细胞命运和肿瘤发生的有效表观遗传调节剂,并且
代表了一种有前景的针对肿瘤细胞异质性的定制治疗策略。然而,临床
小RNA的翻译因其安全性和有效性方面的巨大知识差距而受到限制
递送至 GBM 细胞。本研究的总体目标是利用高通量筛选方法
优化聚(β-氨基酯)(PBAE)聚合物纳米粒子,用于治疗性小 RNA 递送以治疗
GBM。我们的初步数据表明,第一代 PBAE 材料能够将小 RNA 递送至
体外抑制 GBM 增殖表型,并显着减缓 GBM 异种移植物中 GBM 肿瘤的生长
体内。然而,这些纳米粒子需要在递送效率、生物材料介导的肿瘤方面进行优化
靶向性、长期纳米颗粒胶体稳定性以及整个肿瘤体积的渗透性,以进一步促进其作用
临床可翻译性。为了开发优化的第二代 PBAE 纳米粒子配方,拟议的工作
将利用新颖的高通量方法来产生聚合物结构多样性并筛选数百个
独特的聚合物结构可同时识别具有改进效力和癌症靶向的递送材料。在
目标 1,创新的体外测定检查纳米颗粒在克服关键细胞内缺陷方面的性能
递送屏障,例如纳米颗粒摄取和内体逃逸将在主要患者中进行
衍生的 GBM 细胞模型可以更好地预测纳米粒子在体内的性能。此外,这些测定将
产生关于如何改变生物材料结构以控制其结构的重要结构-功能关系
以癌症选择性方式与细胞相互作用。在目标 2 中,纳米粒子表面工程技术将
用于增强纳米颗粒的稳定性和肿瘤穿透能力。原位GBM肿瘤
将用优化的纳米颗粒制剂治疗小鼠,以表征纳米颗粒扩散
整个肿瘤块。这对于实现均匀的纳米颗粒输送以及达到
肿瘤周围的浸润性 GBM 细胞是肿瘤术后复发的主要原因
治疗。最后,在目标 3 中,将评估携带两种 GBM 抑制性 micro-RNA 的纳米颗粒的性能
减少 GBM 增殖和自我更新的能力。最先进的人类原代 GBM 细胞模型将是
用于评估纳米颗粒诱导的体外表型变化,纳米颗粒也将被注入
荷瘤小鼠评估体内 3D 肿瘤环境中的治疗递送。这些发现将
对开发可扩展的、可生物降解的小RNA递送系统来治疗具有重大积极影响
脑癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuan Rui其他文献
Yuan Rui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Customized craniofacial stem cell therapy for craniofacial bone defects
颅面骨缺损定制颅面干细胞治疗
- 批准号:
9135822 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Customized craniofacial stem cell therapy for craniofacial bone defects
颅面骨缺损的定制颅面干细胞治疗
- 批准号:
9147559 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Cardiac Progenitor Patch for Treatment of Myocardial Infarction
用于治疗心肌梗塞的心脏祖细胞贴片
- 批准号:
7902318 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Cardiac Progenitor Patch for Treatment of Myocardial Infarction
用于治疗心肌梗塞的心脏祖细胞贴片
- 批准号:
8055266 - 财政年份:2010
- 资助金额:
-- - 项目类别: