Unmasking Conduction Deficits in the Scn5a+/- Mouse Model of Brugada Syndrome
揭示 Scn5a/Brugada 综合征小鼠模型中的传导缺陷
基本信息
- 批准号:10315616
- 负责人:
- 金额:$ 4.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2023-08-09
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdhesionsAnimalsArrhythmiaAttenuatedBiomedical ResearchBrugada syndromeCalciumCardiac Electrophysiologic TechniquesCase StudyCell membraneCellsChildClinicalConflict (Psychology)Connexin 43ConnexinsCouplingDevelopmentDiagnosisDiagnosticDiseaseEdemaElectrocardiogramElectrolytesElectrophysiology (science)EquilibriumEventExperimental DesignsFluorescenceGenesGeneticGoalsHeartHeart AbnormalitiesHyponatremiaImageIntercalated discInvestigationLeadLearningMannitolMapsMeasuresMediatingMembrane PotentialsMentorsMentorshipMicroelectrodesModelingMonitorMusMutationNatureOpticsPathologicPathologyPatientsPatternPeptidesPerfusionPharmaceutical PreparationsPhysiologicalPlasmaPopulationPredictive ValueReportingResearchResearch InstituteResearch PersonnelResolutionRestRiskRouteSideSodiumSodium ChannelStructureSymptomsSyndromeTechniquesTestingTrainingTransmission Electron MicroscopyUniversitiesVariantVentricularVentricular ArrhythmiaVirginiaWashingtonWidthWild Type MouseWorkcareerclinically relevantdriving forceexperienceexperimental studyextracellularhigh riskin vivointerstitialloss of function mutationmouse modelnovelnovel diagnosticspreventresponseskillsspatiotemporalstructural heart diseasesudden cardiac deaththeoriestherapy developmenttoolvoltagevoltage sensitive dyeyoung adult
项目摘要
Project Summary
Brugada Syndrome (BrS) is a rare but severe disease that can lead to arrhythmias and sudden cardiac death in
children and young adults with no structural heart disease. The most prominent genetic contributor to this disease
is loss of function mutations in scn5a, the gene encoding the voltage gated sodium channel, Nav1.5. However,
many BrS patients with these mutations are asymptomatic until experiencing a major arrhythmic event, making
this syndrome “concealed” in nature. While diagnostic drug challenges exist for those at high risk of becoming
symptomatic, they have low positive predictive value. The relationship between loss of Nav1.5, conduction
slowing, and arrhythmias is well established, and it is possible that concealed conduction slowing is the
underlying driver of BrS pathology. This proposal aims to utilize a scn5a heterozygous mouse model of BrS to
determine whether modulation of ephaptic coupling within the intact heart can unmask BrS-associated
conduction slowing. In Aim 1, ephaptic coupling will be manipulated by altering the width of the perinexus, a
nanodomain of the intercalated disk, in the isolated, Langendorff-perfused Scn5a+/- and WT mouse heart.
Conduction velocity will be assessed using optical mapping, wherein the intact heart is perfused with a voltage
sensitive dye and imaged with high spatio-temporal resolution. Dr. Rob Gourdie at Virginia Tech will provide
technical mentorship while the fellow learns the technique of transmission electron microscopy. She will then
employ this technique to confirm changes in perinexal width. The long-term goal for this component is to develop
a novel diagnostic for BrS. Aim 2 of this proposal will investigate whether hyponatremia can unmask greater
conduction slowing in the Sn5a+/- mouse heart relative to its WT counterpart. Again, the fellow will utilize optical
mapping to assess conduction in response to this change. She has recently collaborated with the lab of Dr. Matt
Kay at George Washington University to learn how to build and implement floating microelectrodes, and will
continue to work with this group in order establish this technique in Dr. Poelzing's lab at the Fralin Biomedical
Research Institute at Virginia Tech Carilion (FBRI). The floating microelectrode technique will provide stable and
direct electrophysiological measures from intact, beating mouse hearts in response to hyponatremia. The long-
term goal for this component is to assess whether monitoring plasma sodium and calcium levels in BrS patients
may be an effective approach to prevent clinical manifestations of BrS. Together, the results of this proposal
may suggest new avenues of investigation for novel diagnostics and treatments for BrS. All of the proposed
experiments will be conducted at FBRI, the collaborative biomedical research campus of Virginia Tech. With the
support of her sponsor and mentoring team, this project will also be the basis to expand and strengthen the
fellow's technical and professional skill sets in order to prepare her for the next step in her career plan as a
postdoctoral associate en route to becoming an independent researcher in the field of cardiac electrophysiology.
项目概要
布鲁格达综合征 (BrS) 是一种罕见但严重的疾病,可导致心律失常和心源性猝死。
无结构性心脏病的儿童和年轻人是导致这种疾病的最显着的遗传因素。
scn5a 是编码电压门控钠通道 Nav1.5 的基因的功能缺失突变。
许多携带这些突变的 BrS 患者在发生重大心律失常事件之前都是无症状的,这使得
这种综合征本质上是“隐藏的”,而对于那些高风险人群来说,诊断药物存在挑战。
有症状,其阳性预测值较低 Nav1.5 丢失与传导之间的关系。
减慢,并且心律失常已经确定,并且隐匿性传导减慢可能是
该提案旨在利用 BrS 的 scn5a 杂合小鼠模型来研究 BrS 病理学的潜在驱动因素。
确定完整心脏内的触觉耦合的调节是否可以揭示 BrS 相关性
在目标 1 中,将通过改变会周带的宽度来控制传导耦合。
Langendorff 灌注的分离的 Scn5a+/- 和 WT 小鼠心脏中的闰盘纳米结构域。
将使用光学测绘评估传导速度,但完整的心脏灌注有电压
弗吉尼亚理工大学的 Rob Gourdie 博士将提供敏感染料和高时空分辨率成像。
技术指导,同时该研究员将学习透射电子显微镜技术。
采用这种技术来确认周围宽度的变化 该组件的长期目标是开发。
该提案的目标 2 将研究低钠血症是否可以揭示更多的问题。
与 WT 小鼠心脏相比,Sn5a+/- 小鼠心脏的传导速度减慢,该人员再次使用光学。
她最近与马特博士的实验室合作,绘制了评估传导的图。
凯在乔治华盛顿大学学习如何构建和实施浮动微电极,并将
继续与该小组合作,以便在弗拉林生物医学中心 Poelzing 博士的实验室中建立这项技术
弗吉尼亚理工大学 Carilion 研究所 (FBRI) 的浮动微电极技术将提供稳定且可靠的技术。
从完整的、跳动的小鼠心脏对低钠血症的反应进行直接电生理测量。
该部分的长期目标是评估是否监测 BrS 患者的血浆钠和钙水平
综上所述,该提案的结果可能是预防 BrS 临床表现的有效方法。
可能会为 BrS 的新诊断和治疗方法提供新的研究途径。
实验将在弗吉尼亚理工大学的生物医学合作研究园区 FBRI 进行。
在她的赞助商和指导团队的支持下,该项目也将成为扩大和加强
研究员的技术和专业技能,以便为她作为职业规划的下一步做好准备
博士后助理正在成为心脏电生理学领域的独立研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grace Anna Bonson其他文献
Grace Anna Bonson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grace Anna Bonson', 18)}}的其他基金
Unmasking Conduction Deficits in the Scn5a+/- Mouse Model of Brugada Syndrome
揭示 Scn5a/Brugada 综合征小鼠模型中的传导缺陷
- 批准号:
10516016 - 财政年份:2021
- 资助金额:
$ 4.29万 - 项目类别:
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
Viral subversion of intercellular coupling during myocarditis
心肌炎期间细胞间耦合的病毒颠覆
- 批准号:
10656515 - 财政年份:2022
- 资助金额:
$ 4.29万 - 项目类别:
Viral subversion of intercellular coupling during myocarditis
心肌炎期间细胞间耦合的病毒颠覆
- 批准号:
10522824 - 财政年份:2022
- 资助金额:
$ 4.29万 - 项目类别:
Unmasking Conduction Deficits in the Scn5a+/- Mouse Model of Brugada Syndrome
揭示 Scn5a/Brugada 综合征小鼠模型中的传导缺陷
- 批准号:
10516016 - 财政年份:2021
- 资助金额:
$ 4.29万 - 项目类别:
Signaling in Inherited and Acquired Sodium Channel Gain of Function
遗传性和获得性钠通道功能增益中的信号传导
- 批准号:
10201723 - 财政年份:2018
- 资助金额:
$ 4.29万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 4.29万 - 项目类别: