Automated Presurgical Language Mapping via Deep Learning for Multimodal Brain Connectivity

通过深度学习进行自动术前语言映射以实现多模式大脑连接

基本信息

  • 批准号:
    10286181
  • 负责人:
  • 金额:
    $ 22.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Approximately 100,000 people in the United States are diagnosed with a primary brain tumor each year. Neu- rosurgery remains the first and most common therapeutic option for these patients with outcomes linked to the extent of tumor resection. However, larger resections also increase the risk for postoperative deficits, particularly in the motor and language areas of the eloquent cortex. Task fMRI (t-fMRI) has emerged as a powerful nonin- vasive tool for preoperative mapping, but these acquisitions are lengthy and cognitively demanding for patients. Moreover, t-fMRI is unreliable if the patient cannot perform the tasks while in the scanner. Our long-term goal is to develop an automated platform for reliable eloquent cortex mapping across a broad patient cohort that comple- ments the existing clinical workflow. The overall objective of this proposal is to design and validate new machine learning algorithms that leverage the complementary strengths of resting-state fMRI (rs-fMRI) and diffusion MRI (d-MRI), which are both passive modalities and easy to acquire. Our central hypothesis is that the combined structural-functional connectivity information in these modalities will enable us to localize language functionality in patients with brain tumors. Our innovative strategy uses recent advancements in deep learning to capture com- plex interactions in the rs-fMRI and d-MRI data that collectively define the language areas. We will evaluate our hypothesis via two specific aims. In Aim 1 we will develop a graph neural network (GNN) that employs specialized convolutional filters to capture topological properties of the connectivity data across multiple scales. Our GNN will be trained in a supervised fashion and evaluated against t-fMRI activations and intraoperative electrocortical stimulation. In Aim 2 we will conduct an exploratory analysis to retrospectively link our GNN predictions to post- operative changes in language functionality. Namely, we hypothesize that patients for whom the surgical path intersects our GNN predictions will experience greater deficits across fine-grained language subdomains. We will also assess the prognostic value of our GNN predictions, as compared to other clinical factors. We anticipate the proposed research will have a transformative impact on surgical planning by helping neurosurgeons to plan more targeted and safer surgeries, thus improving patient outcomes and overall quality of care.
项目概要/摘要 美国每年约有 100,000 人被诊断患有原发性脑肿瘤。 对于这些患者来说,呼吸手术仍然是第一个也是最常见的治疗选择,其结果与 然而,较大的切除也会增加术后缺陷的风险,特别是 任务功能磁共振成像 (t-fMRI) 已成为一种强大的非功能性功能。 术前绘图的广泛工具,但这些采集时间较长且对患者的认知要求较高。 此外,如果患者在扫描仪中无法执行任务,那么 t-fMRI 就不可靠。我们的长期目标是。 开发一个自动化平台,在广泛的患者群体中进行可靠的雄辩皮层映射,该平台完成了 该提案的总体目标是设计和验证新机器。 利用静息态 fMRI (rs-fMRI) 和扩散 MRI 互补优势的学习算法 (d-MRI),这都是被动方式并且易于获取,我们的中心假设是结合起来。 这些模式中的结构功能连接信息将使我们能够本地化语言功能 我们的创新策略利用深度学习的最新进展来捕捉脑肿瘤患者的症状。 我们将评估共同定义语言区域的 rs-fMRI 和 d-MRI 数据中的复杂相互作用。 通过两个具体目标进行假设 在目标 1 中,我们将开发一个采用专门技术的图神经网络(GNN)。 卷积滤波器来捕获跨多个尺度的连接数据的拓扑属性。 将以监督方式进行培训,并根据 t-fMRI 激活和术中皮层电图进行评估 在目标 2 中,我们将进行探索性分析,以回顾性地将我们的 GNN 预测与后刺激联系起来。 也就是说,我们忍受了手术路径的患者。 与我们的 GNN 预测相交,我们将在细粒度语言子域中遇到更大的缺陷。 与我们预期的其他临床因素相比,还评估了我们的 GNN 预测的预后价值。 拟议的研究将帮助神经外科医生制定更多计划,从而对手术计划产生变革性影响 有针对性且更安全的手术,从而改善患者的治疗效果和整体护理质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Archana Venkataraman其他文献

Archana Venkataraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Archana Venkataraman', 18)}}的其他基金

A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
  • 批准号:
    10826595
  • 财政年份:
    2023
  • 资助金额:
    $ 22.14万
  • 项目类别:

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 22.14万
  • 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
  • 批准号:
    10711521
  • 财政年份:
    2023
  • 资助金额:
    $ 22.14万
  • 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
  • 批准号:
    10585553
  • 财政年份:
    2023
  • 资助金额:
    $ 22.14万
  • 项目类别:
Project 3: Intraarticular Mineralization
项目3:关节内矿化
  • 批准号:
    10555688
  • 财政年份:
    2023
  • 资助金额:
    $ 22.14万
  • 项目类别:
Wearable elastography for ambulatory monitoring of tissue mechanics
用于组织力学动态监测的可穿戴弹性成像
  • 批准号:
    10726529
  • 财政年份:
    2023
  • 资助金额:
    $ 22.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了