Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
基本信息
- 批准号:10279283
- 负责人:
- 金额:$ 39.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectArchitectureAstrocytesBehaviorBioinformaticsBiologicalBiological AssayBiological ModelsBiologyBiomedical EngineeringBiomimeticsBlood capillariesCXCL12 geneCXCRCXCR4 geneCell CommunicationCell Culture TechniquesCell MaintenanceCellsCoculture TechniquesComplexDataDevelopmentDiseaseDisease ProgressionDoseEndothelial CellsExcisionExposure toFoundationsGeneticGenomicsGlioblastomaGliomaGoalsHomingHumanHypoxiaImmuneIn VitroIndividualInterruptionKnowledgeLigandsMediatingMethodsMicrofluidic MicrochipsMicrofluidicsMicrogliaModelingMolecularOncologyOperative Surgical ProceduresOrganoidsPathway interactionsPatientsPericytesPharmacologyPhysiologicalPositioning AttributePrediction of Response to TherapyPropertyRadiationRadiation therapyRecurrenceResearch DesignResistanceResolutionRoleSamplingShelter facilitySiteSliceSpecificityTimeTissue EngineeringTissuesTumor TissueTumorigenicityValidationbasecell behaviorcell typechemotherapeutic agentconventional therapyendothelial stem cellgenotoxicityin vivoin vivo Modelinsightinterdisciplinary approachirradiationmouse modelmultidisciplinaryneoplastic cellnovelradiation resistancereceptorresponseself-renewalsingle-cell RNA sequencingsmall hairpin RNAstemstem cell biologystem cell proliferationstem cellsstemnesstargeted treatmenttherapy resistantthree dimensional cell culturethree-dimensional modelingtranscriptome sequencingtranscriptomicstreatment responsetumortumor microenvironment
项目摘要
Summary
One of the critical challenges in the treatment of Glioblastoma (GBM) is the presence of highly resistant cells
with stem-like properties, called glioma stem cells (GSCs), that evade surgical resection, resist conventional
treatments and are primarily responsible for tumor recurrence. The perivascular niche within the GBM tumor
microenvironment (TME) has been well recognized as a critical site that shelters GSCs and promotes their
stemness, invasion, and therapeutic resistance.
Extensive studies from others and our lab, using in vitro and in vivo models, have demonstrated that the
crosstalk between the endothelial cells (ECs) and GSCs regulates GSC proliferation, tumorigenicity and self-
renewal capacity. However, the perivascular niche is a complex microenvironment comprised not only of ECs
but multiple other cell types including astrocytes, pericytes, and immune cells. How the cell-cell interactions
between the various cellular components of the perivascular niche modulate GSC behavior (proliferation vs.
quiescence and invasion vs. homing) and therapy resistance is poorly understood. To address these unmet
biological knowledge gaps, there is a critical need for sophisticated and more realistic ex vivo tumor models that
better recapitulate the physiological complexities of the GBM perivascular niche to advance our fundamental
understanding of the biology of the disease and predict therapeutic responses.
Recently, we have established and validated an on-chip microfluidic tumor model of GBM, with a unique 3D
organotypic architecture, to study the influence of the perivascular niche on GSC invasion. We have shown that
co-culturing of astrocytes enhances EC-induced invasion of GSCs, where RNA-seq analysis of mono-culture vs.
tri-culture provided a mechanistic insight into the receptor-ligand pairs that mediate the interactions between
cells. Based on these foundational developments, in this study our goal is to develop an ex vivo tumor model of
GBM, bioinspired from the native perivascular niche, with patient-derived cells to dissect the role of cellular
components within the niche on GSC biology and response to treatment at single cell resolution.
In Aim 1, our objective is to determine the influence of the key cell types within the perivascular niche on
GSC-EC interactions. In Aim 2, we plan to mechanistically unveil the impact of radiation treatment on GSCs-
perivascular niche interactions, while in Aim 3, we will blunt invasion and sensitize GSCs through disruption of
niche-tumor cell interactions. Our study design uniquely employs an interdisciplinary approach including
microengineering of a bioinspired ex vivo tumor model, single-cell level resolution analysis, molecular-level
transcriptomics, and validation using ex vivo patient tumor samples. Successful completion of these studies will
not only further our understanding of the interactions of GSCs with the perivascular niche but will also facilitate
identification of novel targets to block disease progression.
概括
胶质母细胞瘤 (GBM) 治疗的关键挑战之一是高度耐药细胞的存在
具有类似干细胞的特性,称为神经胶质瘤干细胞(GSC),可以逃避手术切除,抵抗传统疗法
治疗和肿瘤复发的主要原因。 GBM 肿瘤内的血管周围生态位
微环境(TME)已被公认为是庇护 GSC 并促进其发展的关键场所
干性、侵袭性和治疗耐药性。
其他人和我们的实验室使用体外和体内模型进行的广泛研究表明,
内皮细胞 (EC) 和 GSC 之间的串扰调节 GSC 增殖、致瘤性和自我修复
更新能力。然而,血管周围生态位是一个复杂的微环境,不仅由 EC 组成
但多种其他细胞类型,包括星形胶质细胞、周细胞和免疫细胞。细胞与细胞如何相互作用
血管周围生态位的各种细胞成分之间调节 GSC 行为(增殖与增殖)
静止和入侵与归巢)和治疗耐药性知之甚少。为了解决这些未满足的问题
由于生物学知识差距,迫切需要复杂且更现实的离体肿瘤模型
更好地概括 GBM 血管周围生态位的生理复杂性,以推进我们的基础研究
了解疾病的生物学并预测治疗反应。
最近,我们建立并验证了 GBM 的片上微流控肿瘤模型,具有独特的 3D
器官型结构,研究血管周围生态位对 GSC 侵袭的影响。我们已经证明
星形胶质细胞的共培养增强了 EC 诱导的 GSC 侵袭,其中单一培养与单独培养的 RNA-seq 分析
三元培养提供了对介导受体-配体之间相互作用的受体-配体对的机制洞察。
细胞。基于这些基础进展,在本研究中,我们的目标是开发一种离体肿瘤模型
GBM,受天然血管周围生态位的生物启发,使用患者来源的细胞来剖析细胞的作用
GSC 生物学领域内的组成部分以及单细胞分辨率下的治疗反应。
在目标 1 中,我们的目标是确定血管周围生态位内的关键细胞类型对
GSC-EC 相互作用。在目标 2 中,我们计划从机制上揭示放射治疗对 GSC 的影响——
血管周围生态位相互作用,而在目标 3 中,我们将通过破坏
生态位-肿瘤细胞相互作用。我们的研究设计独特地采用了跨学科方法,包括
仿生离体肿瘤模型的微工程、单细胞水平分辨率分析、分子水平
转录组学,并使用离体患者肿瘤样本进行验证。成功完成这些研究将
不仅进一步加深了我们对 GSC 与血管周围生态位相互作用的理解,而且还将促进
确定阻止疾病进展的新靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehdi Nikkhah其他文献
Mehdi Nikkhah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehdi Nikkhah', 18)}}的其他基金
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10665738 - 财政年份:2021
- 资助金额:
$ 39.15万 - 项目类别:
Elucidating the Role of Perivascular Niche in Glioblastoma Invasion and Therapeutic Resistance at Single Cell Resolution using Biomimetic Tumor Microenvironment Models
使用仿生肿瘤微环境模型以单细胞分辨率阐明血管周围微环境在胶质母细胞瘤侵袭和治疗耐药中的作用
- 批准号:
10487570 - 财政年份:2021
- 资助金额:
$ 39.15万 - 项目类别:
MICROFABRICATED 3D VASCULARIZED CARDIAC TISSUE CONSTRUCTS
微型 3D 血管化心脏组织结构
- 批准号:
8526165 - 财政年份:2013
- 资助金额:
$ 39.15万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 39.15万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 39.15万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 39.15万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 39.15万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 39.15万 - 项目类别: