Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
基本信息
- 批准号:10274928
- 负责人:
- 金额:$ 44.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ALS patientsAcousticsAdoptionAdultAmyotrophic Lateral SclerosisAxonBiological AssayBiomechanicsBiomedical EngineeringBiophysicsCell Culture TechniquesCell Differentiation processCell TherapyCell physiologyCellsClinicalCuesCytometryCytoskeletonDataDegenerative DisorderDerivation procedureDevelopmentDiseaseDisease modelDrug ScreeningEmbryoEmbryonic DevelopmentEngineeringEpiblastEthnic OriginFutureGenerationsGenetic DiseasesGoalsGrantHumanHuman DevelopmentIn VitroInfectionInflammationInjuryIntegrinsInvestigationMalignant - descriptorMechanical StimulationMechanicsMediatingMicrobubblesMorphogenesisMotor Neuron DiseaseMotor NeuronsMuscleNeuroepithelialNeuronsPathway interactionsPeriodicityPharmaceutical PreparationsPharmacologyPhysical environmentPluripotent Stem CellsProcessPropertyProtocols documentationRegenerative MedicineReportingResearchRoleSignal TransductionSourceSpatial DistributionSpinal CordSpinal Muscular AtrophySpinal cord injurySystemTechnologyTestingTherapeuticToxicologyTranscription CoactivatorTraumaUltrasonographybaseblastocystcell typeclinically relevantdesigndifferentiation protocolhuman pluripotent stem cellimplantationimprovedin vivointerestlarge scale productionmechanical forcenerve stem cellnervous system disorderneuron lossnew technologynovelnovel strategiesnovel therapeuticsoperationpluripotencypublic health relevanceregenerative therapyrelating to nervous systemself-renewalsexsingle cell analysisstem cellstool
项目摘要
Project Summary
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
Human pluripotent stem cells (hPSCs) have been hailed as a promising cell source for treating degenerative,
malignant, and genetic diseases, or injuries due to inflammation, infection, and trauma. hPSCs have also been
proven as an invaluable discovery tool to study human development and for developing and testing new drugs.
However, to fully realize the tremendous potential of hPSCs, the first and perhaps the most critical step is the
directed differentiation of hPSCs to specific functional cell types with high efficiency and purity.
Motor neurons (MNs) are a specialized class of neurons that reside in the spinal cord and project axons
to muscles to control their activity. MNs are damaged in diseases such as spinal cord injury, amyotrophic
lateral sclerosis (ALS) and spinal muscular atrophy (SMA). While there are significant interests in
differentiating hPSCs into functional MNs for cell therapies and understanding of MN degenerative diseases,
poorly defined culture conditions and inefficient protocols of MN differentiation from hPSCs have significantly
hindered their broad use. Given that embryonic development is a dynamic process involving constantly
changing physical environments, the central hypothesis of this proposed research is that hPSCs, which is
equivalent to the epiblast in the peri-implantation human embryo, are intrinsically mechanosensitive, and
biophysical cues in the cell microenvironment can provide potent regulatory signals to control their
differentiation and functional maturation towards specific neuronal subtypes such as MNs. This proposal is
strongly motivated by our exciting preliminary data showing that a novel ultrasound-based technology, acoustic
tweezing cytometry (ATC), which can apply controlled dynamic subcellular mechanical forces to hPSCs, can
indeed elicit neuroepithelial and even MN differentiation of hPSCs much more rapidly compared to
conventional protocols that solely rely on soluble factors. Thus we propose in this research to fully develop the
ATC technology to not only elucidate the intrinsic mechanosensitive properties of hPSCs, but also utilize the
technology to improve large-scale production of functional MNs.
In this research we propose to (Aim 1) develop high-throughput ATC technology with improved
capability for mechanical stimulation of hPSCs; (Aim 2) elucidate the role of a regulatory network comprising
mechanosensitive pathways (BMP/YAP activity, RhoA/ROCK/cytoskeleton contractility, and Hippo/LATS) in
regulating ATC-facilitated neuroepithelial differentiation of hPSCs; (Aim 3) apply ATC for high-efficiency
functional MN generation from hPSCs. Successful completion of this research will establish a new, novel
approach for hPSC neural differentiation and MN generation, potentially enabling drastic advances in large-
scale production of clinical-grade MNs for cell-based therapies and drug screens. Our proposed research will
also help establish a novel mechanistic framework for understanding mechanosensitive hPSC properties and
will chart a path to unravel their full complexity for their future regenerative medicine applications.
项目概要
用于高效神经分化的声学镊子细胞术
人类多能干细胞(hPSC)被誉为治疗退行性、
恶性和遗传性疾病,或由于炎症、感染和外伤引起的损伤。 hPSC 也已被
事实证明,它是研究人类发展以及开发和测试新药的宝贵发现工具。
然而,要充分发挥 hPSC 的巨大潜力,第一步,也许也是最关键的一步是
以高效率和纯度定向 hPSC 分化为特定功能细胞类型。
运动神经元 (MN) 是一类特殊的神经元,位于脊髓中并投射轴突
使肌肉控制其活动。 MN 因脊髓损伤、肌萎缩等疾病而受损
侧索硬化症(ALS)和脊髓性肌萎缩症(SMA)。虽然人们对以下领域有重大兴趣
将 hPSC 分化为功能性 MN,用于细胞治疗和了解 MN 退行性疾病,
明确的培养条件和从 hPSC 分化 MN 的低效方案显着
阻碍了它们的广泛使用。鉴于胚胎发育是一个不断变化的动态过程
改变物理环境,这项研究的中心假设是 hPSC,它是
相当于植入期人类胚胎中的外胚层,本质上具有机械敏感性,并且
细胞微环境中的生物物理线索可以提供有效的调节信号来控制它们
向特定神经元亚型(例如 MN)的分化和功能成熟。这个提议是
我们激动人心的初步数据强烈激励了我们,该数据表明一种新颖的基于超声波的技术——声学
镊子细胞术 (ATC) 可对 hPSC 施加受控的动态亚细胞机械力,
与相比,确实更快地引发 hPSC 的神经上皮甚至 MN 分化
仅依赖于可溶性因子的传统方案。因此,我们在这项研究中建议充分开发
ATC 技术不仅可以阐明 hPSC 的固有机械敏感特性,还可以利用
技术来提高功能性MN的大规模生产。
在这项研究中,我们建议(目标 1)开发高通量 ATC 技术,并改进
hPSC 的机械刺激能力; (目标 2)阐明监管网络的作用,包括
机械敏感通路(BMP/YAP 活性、RhoA/ROCK/细胞骨架收缩性和 Hippo/LATS)
调节 ATC 促进的 hPSC 神经上皮分化; (目标3)应用ATC实现高效率
hPSC 生成功能性 MN。这项研究的成功完成将建立一个新的、新颖的
hPSC 神经分化和 MN 生成的方法,有可能在大
用于细胞疗法和药物筛选的临床级 MN 的规模生产。我们提出的研究将
还有助于建立一个新的机制框架来理解机械敏感的 hPSC 特性和
将为未来的再生医学应用阐明其全部复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHERI X DENG其他文献
CHERI X DENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHERI X DENG', 18)}}的其他基金
Acoustic Tweezing Cytometry for Efficient Neural Differentiation
用于高效神经分化的声学镊子细胞术
- 批准号:
10675739 - 财政年份:2021
- 资助金额:
$ 44.12万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9237753 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
10223264 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Microscale Mechanobiology for Musculoskeletal Tissue Engineering using Advanced Ultrasound Techniques
使用先进超声技术进行肌肉骨骼组织工程的微观力学生物学
- 批准号:
9974508 - 财政年份:2017
- 资助金额:
$ 44.12万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
8896236 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9049494 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9049494 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Acoustic tweezing cytometry: technology development and stem cell applications
声学镊子细胞术:技术开发和干细胞应用
- 批准号:
9206500 - 财政年份:2015
- 资助金额:
$ 44.12万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8925077 - 财政年份:2014
- 资助金额:
$ 44.12万 - 项目类别:
Ultrasound-mediated Directed Osteogenic Differentiation of Mesenchymal Stem Cells
超声介导的间充质干细胞定向成骨分化
- 批准号:
8637285 - 财政年份:2014
- 资助金额:
$ 44.12万 - 项目类别:
相似国自然基金
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Implantable Transducer Systems for Auditory Prostheses
用于听觉假体的植入式换能器系统
- 批准号:
10825738 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
- 批准号:
10662053 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别:
Predicting neoadjuvant treatment response of locally advanced rectal cancer using co-registered endo-rectal photoacoustic and ultrasound imaging
使用联合配准直肠内光声和超声成像预测局部晚期直肠癌的新辅助治疗反应
- 批准号:
10637693 - 财政年份:2023
- 资助金额:
$ 44.12万 - 项目类别: