Effects of Noise Exposure Across the Lifespan on Balance and Stability in Older Adults
一生中噪声暴露对老年人平衡和稳定性的影响
基本信息
- 批准号:10276071
- 负责人:
- 金额:$ 53.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcousticsAddressAdultAgeAgingAnatomyAnimal ExperimentationAnimal ModelAnimalsBasic ScienceCellsCessation of lifeCharacteristicsClinicClinicalCochleaControl GroupsDetectionDiagnosisDiseaseDoseElderlyEnvironmentEpithelialEquilibriumEvaluationExhibitsExposure toFinancial compensationForce of GravityFrequenciesFunctional disorderGenetic DiseasesGoalsHeadHead MovementsHearingHumanImpairmentIndividualInjuryInvestigationLabyrinthLeadLifeLinkLongevityMaintenanceMeasuresMethodsModelingMorphologyMotionMotorMusculoskeletal EquilibriumNeuronsNoiseNoise-Induced Hearing LossOrganParticipantPerformancePhysical shapePhysiologicalPlanet EarthPlayPopulationPosturePredispositionPreventionProprioceptionPsychophysicsRattusRecording of previous eventsReflex actionRehabilitation therapyRiskRisk FactorsRodentRoleRotationSecondary toSemicircular canal structureSensorySourceSpinal CordStructureSymptomsSynapsesSystemTestingTrainingTranslationsVariantVestibular NerveVestibular lossVisionWalkingage groupage relatedaging populationbody positionclinical applicationcohortcostdisabilityexperimental studyfall riskfallsfunctional improvementhuman old age (65+)improvedinsightinterdisciplinary approachmiddle agemotor impairmentneglectotoconiaposture instabilitypressurepublic health relevanceresponsesecondary analysissenescencesoundtreatment strategyvestibular reflexvestibulo-ocular reflex
项目摘要
Abstract
Loss of stability and falls is a major risk factor for injury and death in older adults. Previously overlooked,
lifetime noise exposure has been shown to cause damage to the vestibular periphery; although, animal models
and human studies that can provide a mechanistic basis connecting noise-induced vestibular dysfunction and
age-related fall risk are limited. The vestibular system plays a critical role in detection of head movements and
orientation with respect to gravity and is essential for normal vision and postural control. Due to their
anatomical proximity to the cochlea, the otolith organs are exposed to sound pressure and are at risk for noise
overstimulation, which may contribute to vestibular dysfunction. However, damage may not be limited to the
otolith organs. Recent studies have linked noise overstimulation to decreased vestibular nerve activity and loss
of a specialized class of irregularly firing vestibular afferents which exhibit enhanced sensitivity to acceleration.
It is likely that these afferents play an important role initiating postural compensation for abrupt changes in
head or body position due to their physiological characteristics and their projection to secondary vestibular
neurons that project to the spinal cord. Therefore, the effects of noise may accelerate disability associated with
natural aging. The goal of this proposal is to characterize vestibular loss associated with natural aging and how
it is compounded by cumulative noise exposures throughout one’s life. Thus, we will systematically investigate
the effects of noise exposure across the lifespan on otolith and canal structure and function (Aim 1),
specifically address the extent of irregular afferent damage and its functional consequences (Aim 2), and asses
changes in posture, mobility and balance with noise exposure (Aim 3). Changes in sensory cell synapses will
be correlated with vestibular reflex impairment and fall risk associated with postural instability and loss of
balance. To improve our understanding of how these changes occur over the lifetime, we will assess
anatomical and functional changes in early-, middle-, and late-adulthood. Further, functional experiments will
be done in parallel in rats and human participants for maximal translation of our results to the clinic.
Individually, both animal and rodent studies have proven invaluable to our understanding of the effects of noise
exposure on vestibular function. However, both have limitations that can be best addressed with a set of
complimentary studies in the two systems. This proposal describes a comprehensive, multidisciplinary
approach that strives to evaluate the underlying mechanisms in increased falls and fall risk due to a history of
noise exposure in older adults. The susceptibility of these individuals to potentially fatal falls underscores the
need for a systematic approach, that can eventually result in improved training and rehabilitation methods to be
used with this population.
抽象的
失去稳定性和跌倒是老年人受伤和死亡的一个主要风险因素,但以前却被忽视。
然而,动物模型显示,终生接触噪音会对前庭周围造成损害;
和人类研究可以提供连接噪声引起的前庭功能障碍和
与年龄相关的跌倒风险有限。前庭系统在检测头部运动和跌倒方面发挥着关键作用。
相对于重力的定向对于正常视力和姿势控制至关重要。
耳石器官在解剖学上靠近耳蜗,暴露于声压下,存在噪音风险
过度刺激可能会导致前庭功能障碍,但损害可能不仅限于前庭功能障碍。
最近的研究表明噪音过度刺激与前庭神经活动减少和丧失有关。
一类特殊的不规则发射的前庭传入神经,对加速度表现出增强的敏感性。
这些传入神经可能在启动姿势补偿以应对身体突然变化方面发挥着重要作用。
头部或身体位置取决于其生理特征及其对次级前庭的投射
因此,噪音的影响可能会加速与脊髓相关的残疾。
该提案的目标是描述与自然衰老相关的前庭丧失的特征以及如何发生。
人一生中累积的噪音暴露会加剧这种情况,因此,我们将系统地进行调查。
整个生命周期中噪声暴露对耳石和耳道结构和功能的影响(目标 1),
具体解决不规则传入损伤的程度及其功能后果(目标 2),并评估
接触噪声会导致姿势、活动性和平衡发生变化(目标 3)。
与前庭反射损伤以及与姿势不稳定和失去知觉相关的跌倒风险相关
为了提高我们对这些变化在一生中如何发生的理解,我们将评估。
此外,功能实验还将研究成年早期、中期和晚期的解剖学和功能变化。
在大鼠和人类参与者中并行进行,以最大限度地将我们的结果转化为临床。
就个体而言,动物和啮齿动物的研究已被证明对于我们了解噪音的影响具有无价的价值
然而,两者都有局限性,最好通过一组方法来解决。
该提案描述了两个系统的互补研究。
该方法致力于评估由于历史原因导致跌倒和跌倒风险增加的潜在机制
老年人暴露于噪音中,这些人容易发生潜在致命的跌倒,这凸显了这一点。
需要一种系统的方法,最终可以改进培训和康复方法
与该人群一起使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natela M. Shanidze其他文献
Natela M. Shanidze的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natela M. Shanidze', 18)}}的其他基金
Effects of Noise Exposure Across the Lifespan on Balance and Stability in Older Adults
一生中噪声暴露对老年人平衡和稳定性的影响
- 批准号:
10833752 - 财政年份:2021
- 资助金额:
$ 53.82万 - 项目类别:
Effects of Noise Exposure Across the Lifespan on Balance and Stability in Older Adults
一生中噪声暴露对老年人平衡和稳定性的影响
- 批准号:
10491815 - 财政年份:2021
- 资助金额:
$ 53.82万 - 项目类别:
Effects of Noise Exposure Across the Lifespan on Balance and Stability in Older Adults
一生中噪声暴露对老年人平衡和稳定性的影响
- 批准号:
10670349 - 财政年份:2021
- 资助金额:
$ 53.82万 - 项目类别:
Coordination of Eye and Head Movements in Central Field Loss
中心场丢失时眼睛和头部运动的协调
- 批准号:
9934852 - 财政年份:2019
- 资助金额:
$ 53.82万 - 项目类别:
Coordination of Eye and Head Movements in Central Field Loss
中心场丢失时眼睛和头部运动的协调
- 批准号:
9360137 - 财政年份:2016
- 资助金额:
$ 53.82万 - 项目类别:
Coordination of Eye and Head Movements in Central Field Loss
中心场丢失时眼睛和头部运动的协调
- 批准号:
9790966 - 财政年份:2016
- 资助金额:
$ 53.82万 - 项目类别:
相似国自然基金
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
- 批准号:
10735930 - 财政年份:2023
- 资助金额:
$ 53.82万 - 项目类别:
Molecular, Functional, and Microstructural Imaging of Cervical Remodeling Biomarkers
宫颈重塑生物标志物的分子、功能和微观结构成像
- 批准号:
10895849 - 财政年份:2023
- 资助金额:
$ 53.82万 - 项目类别:
Automated High-purity Exosome isolation-based AD diagnostics system (AHEADx)
基于自动化高纯度外泌体分离的 AD 诊断系统 (AHEADx)
- 批准号:
10738697 - 财政年份:2023
- 资助金额:
$ 53.82万 - 项目类别:
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
- 批准号:
10727499 - 财政年份:2023
- 资助金额:
$ 53.82万 - 项目类别: