Centromere Sequence, Variation, and Function

着丝粒序列、变异和功能

基本信息

  • 批准号:
    10226097
  • 负责人:
  • 金额:
    $ 6.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The accurate segregation of chromosomes ensures the faithful inheritance of genetic information. Defects in chromosome segregation can cause an imbalance in chromosome number, or aneuploidy, which is the leading cause of over 90% of human cancers and contributes to spontaneous abortion and birth defects (e.g. Down syndrome). The locus that ensures that chromosomes are equally segregated during cell division is the centromere. Centromeres are comprised of repetitive α-satellite that span several megabases on each chromosome. The repetitive nature of these regions has posed an enormous challenge to standard short-read sequencing and assembly methods, and as a result, all centromeres remain unassembled in the human genome. The lack of centromere sequence assemblies has greatly hindered our understanding of the role these sequences play in essential cell biological processes required to maintain genome integrity. This proposal aims to address this gap in knowledge by generating linear sequence assemblies of each human centromere using a combination of long-read sequencing technologies and novel computational assembly tools. The proposed work will also reconstruct the evolutionary history of centromeres by elucidating the genetic variation of centromeres in humans and apes. In addition, this work will uncover how genetic variation at centromeres impacts the transcriptional landscape by sequencing and annotating full-length centromeric transcripts in the human genome. Finally, this proposal will determine if genetic variation at centromeres impacts the ability of chromosomes to be accurately segregated during cell division using cell-based assays. Taken together, this research will uncover the linear organization of human centromeric regions and elucidate how genetic variation in these regions impacts the accuracy of chromosome segregation during cell division.
项目概要/摘要 染色体的精确分离保证了遗传信息的忠实遗传。 染色体分离可导致染色体数量不平衡或非整倍体,这是主要的原因 90%以上的人类癌症都是由它引起的,并会导致自然流产和出生缺陷(例如唐氏综合症) 确保染色体在细胞分裂过程中均匀分离的位点是 着丝粒由重复的 α 卫星组成,每个卫星跨越几个兆碱基。 这些区域的重复性质对标准短读提出了巨大的挑战。 测序和组装方法,因此,人类基因组中的所有着丝粒仍然未组装。 着丝粒序列组装的缺乏极大地阻碍了我们对这些作用的理解 该提案的目的是在维持基因组完整性所需的重要细胞生物过程中发挥作用。 通过使用 所提出的工作结合了长读长测序技术和新颖的计算组装工具。 还将通过阐明着丝粒的遗传变异,重建着丝粒的进化史 此外,这项工作将揭示着丝粒的遗传变异如何影响着丝粒。 通过对人类基因组中的全长着丝粒转录物进行测序和注释来绘制转录景观。 最后,该提案将确定着丝粒的遗传变异是否影响染色体的能力 总而言之,这项研究将揭示如何在细胞分裂过程中使用基于细胞的检测准确分离。 人类着丝粒区域的线性组织并阐明这些区域的遗传变异 影响细胞分裂过程中染色体分离的准确性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mining the gaps of chromosome 8.
挖掘8号染色体的缺口。
  • DOI:
  • 发表时间:
    2021-05-14
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Logsdon, Glennis A;Eichler, Evan E
  • 通讯作者:
    Eichler, Evan E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Glennis Amelia Logsdon其他文献

Glennis Amelia Logsdon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Glennis Amelia Logsdon', 18)}}的其他基金

Human centromere variation and function
人类着丝粒变异和功能
  • 批准号:
    10506033
  • 财政年份:
    2022
  • 资助金额:
    $ 6.86万
  • 项目类别:
Centromere Sequence, Variation, and Function
着丝粒序列、变异和功能
  • 批准号:
    10001975
  • 财政年份:
    2019
  • 资助金额:
    $ 6.86万
  • 项目类别:

相似国自然基金

社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
  • 批准号:
    82370895
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
  • 批准号:
    52305599
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
  • 批准号:
    52378051
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
  • 批准号:
    12305308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cell competition, aneuploidy, and aging
细胞竞争、非整倍性和衰老
  • 批准号:
    10648670
  • 财政年份:
    2023
  • 资助金额:
    $ 6.86万
  • 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
  • 批准号:
    10626281
  • 财政年份:
    2023
  • 资助金额:
    $ 6.86万
  • 项目类别:
Uncovering molecular factors driving sexual dimorphism in crossing over in diverse mouse genetic backgrounds
揭示不同小鼠遗传背景交叉中驱动性别二态性的分子因素
  • 批准号:
    10722746
  • 财政年份:
    2023
  • 资助金额:
    $ 6.86万
  • 项目类别:
The role of ZCWPW1 in meiosis
ZCWPW1 在减数分裂中的作用
  • 批准号:
    10680189
  • 财政年份:
    2023
  • 资助金额:
    $ 6.86万
  • 项目类别:
Understanding how variations in nuclear size after whole genome doubling affect tumorigenesis
了解全基因组加倍后核大小的变化如何影响肿瘤发生
  • 批准号:
    10607178
  • 财政年份:
    2023
  • 资助金额:
    $ 6.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了