Theoretical and experimental investigation of multi-domain protein folding and conformational dynamics
多域蛋白质折叠和构象动力学的理论和实验研究
基本信息
- 批准号:10218203
- 负责人:
- 金额:$ 45.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiological ProcessBiologyBypassCatalysisCell physiologyCellsChemicalsCircular DichroismClosure by clampCollaborationsCrowdingDNADNA BindingDNA DamageDNA lesionDNA-Directed DNA PolymeraseElementsEnergy TransferEnvironmentFamilyFluorescenceFluorescence SpectroscopyHot SpotHumanIn VitroInvestigationIonsKineticsLaboratoriesLaboratory ResearchLobeMeasurementMethodsMicroscopicModelingMolecularMolecular ConformationNamesNucleotidesOrganismPathway interactionsPlayPolymerasePrincipal InvestigatorProcessProliferating Cell Nuclear AntigenProtein ConformationProtein DynamicsProtein EngineeringProteinsPublishingResearch PersonnelRibosomesRoleSlideStructureSulfolobus solfataricusSystemTertiary Protein StructureTestingTheoretical StudiesTheoretical modelUncertaintyValidationWorkantigen bindingbaseconformational conversiondrug discoveryexperimental studyflexibilityimprovedin vivomacromoleculenovelpredictive modelingprotein foldingreplication factor Astopped-flow fluorescencethermostabilitythree dimensional structure
项目摘要
PROJECT SUMMARY
Proper folding is crucial to achieving a protein’s unique three dimensional structure while the conformational
dynamics of the protein play a major role in its biological function. Although significant progress has been
made in understanding the folding/unfolding and conformational dynamics for single-domain proteins, these
two fundamental processes remain largely unexplored for multi-domain proteins, which have been suggested
to account for up to 80% of all eukaryotic proteins. Therefore, a significant disparity exists in our understanding
of the underlying mechanisms of folding/unfolding and conformational dynamics for the majority of human
proteins and we seek to address these uncertainties through theoretical and experimental investigation. In this
proposal, we devise a comprehensive strategy to answer the above, in-depth mechanistic unknowns regarding
multi-domain proteins through an energy landscape approach with subsequent experimental validation. The
energy landscape approach significantly improves technical capabilities through the establishment of
theoretical models for uncovering underlying mechanisms. By establishing the microscopic energy landscape
and structure based models, we will elucidate the folding/unfolding mechanisms of DPO4, a multi-domain,
model Y-family DNA polymerase critical for bypassing unrepaired DNA lesions, in vitro and in vivo (here means
mimicking in vivo conditions), and predict possible intermediate states and critical residues under various
environments, including the presence of the ribosome (co-translational) and a crowding agent (in vivo), as well
as different thermal and chemical denaturant conditions. Through our microscopic energy landscape and
structure based models, we will reveal the underlying mechanisms of conformational changes between various
conformational states of DPO4 upon binding to DNA or a protein replication factor PCNA through quantifying
the stability, kinetics, and structural hot spots critical for function. The theoretical model predictions will be
tested and validated through stopped-flow, circular dichroism, fluorescence energy transfer, and other
spectroscopic experiments. The results generated from the proposal will advance the DNA polymerase field
while the methods developed here are general and can serve as a framework for studies of folding/unfolding
and conformational dynamics of other multi-domain proteins. Moreover, the intricacies of protein
folding/unfolding and conformational transitions revealed by our proposed studies will facilitate protein design
and drug discovery.
项目概要
正确的折叠对于实现蛋白质独特的三维结构至关重要,而构象
尽管已经取得了重大进展,但蛋白质的动力学在其生物学功能中发挥着重要作用。
为了理解单域蛋白质的折叠/展开和构象动力学,这些
对于多结构域蛋白质,两个基本过程在很大程度上仍未被探索,这已被提出
占所有真核蛋白质的 80% 因此,我们的理解存在显着差异。
大多数人类折叠/展开和构象动力学的基本机制
蛋白质,我们试图通过理论和实验研究来解决这些不确定性。
提案中,我们设计了一个全面的策略来回答上述关于机械的深入的未知问题
通过能量景观方法和随后的实验验证来研究多域蛋白质。
能源景观方法通过建立
通过建立微观能量景观来揭示潜在机制的理论模型。
和基于结构的模型,我们将阐明 DPO4(一种多域、
模型 Y 家族 DNA 聚合酶对于绕过体外和体内未修复的 DNA 损伤至关重要(这里是指
模仿体内条件),并预测各种情况下可能的中间状态和关键残基
环境,包括核糖体(共翻译)和拥挤剂(体内)的存在,以及
通过我们的微观能量景观和不同的热和化学变性条件。
基于结构的模型,我们将揭示不同结构之间构象变化的潜在机制
通过定量分析 DPO4 与 DNA 或蛋白质复制因子 PCNA 结合后的构象状态
对功能至关重要的稳定性、动力学和结构热点。
通过停流、圆二色性、荧光能量转移等进行测试和验证
该提案产生的结果将推动 DNA 聚合酶领域的发展。
虽然这里开发的方法是通用的,可以作为折叠/展开研究的框架
以及其他多结构域蛋白质的构象动力学。
我们提出的研究揭示的折叠/展开和构象转变将促进蛋白质设计
和药物发现。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems.
细胞生物学中的非平衡热力学:将平衡形式主义扩展到生命系统。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Fang, Xiaona;Wang, Jin
- 通讯作者:Wang, Jin
Kinetic Investigation of Translesion Synthesis across a 3-Nitrobenzanthrone-Derived DNA Lesion Catalyzed by Human DNA Polymerase Kappa.
人类 DNA 聚合酶 Kappa 催化的 3-硝基苯并蒽酮衍生 DNA 损伤跨损伤合成的动力学研究。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:4.1
- 作者:Phi, Kenneth K;Smith, Madison C;Tokarsky, E John;Suo, Zucai
- 通讯作者:Suo, Zucai
Investigating the Conformational Dynamics of a Y-Family DNA Polymerase during Its Folding and Binding to DNA and a Nucleotide.
研究 Y 家族 DNA 聚合酶折叠以及与 DNA 和核苷酸结合过程中的构象动力学。
- DOI:
- 发表时间:2022-02-28
- 期刊:
- 影响因子:8
- 作者:Chu, Xiakun;Suo, Zucai;Wang, Jin
- 通讯作者:Wang, Jin
Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase.
研究多域 Y 家族 DNA 聚合酶折叠和功能之间的权衡。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:7.7
- 作者:Chu, Xiakun;Suo, Zucai;Wang, Jin
- 通讯作者:Wang, Jin
Conformational state switching and pathways of chromosome dynamics in cell cycle.
细胞周期中染色体动力学的构象状态转换和途径。
- DOI:
- 发表时间:2020-09
- 期刊:
- 影响因子:15
- 作者:Chu, Xiakun;Wang, Jin
- 通讯作者:Wang, Jin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JIN WANG其他文献
JIN WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JIN WANG', 18)}}的其他基金
Targeting the HIV-1 Reservoir in Myeloid Cells
靶向骨髓细胞中的 HIV-1 储存库
- 批准号:
10445309 - 财政年份:2021
- 资助金额:
$ 45.81万 - 项目类别:
Targeting the HIV-1 Reservoir in Myeloid Cells
靶向骨髓细胞中的 HIV-1 储存库
- 批准号:
10636954 - 财政年份:2021
- 资助金额:
$ 45.81万 - 项目类别:
Targeting the HIV-1 Reservoir in Myeloid Cells
靶向骨髓细胞中的 HIV-1 储存库
- 批准号:
10326730 - 财政年份:2021
- 资助金额:
$ 45.81万 - 项目类别:
Theoretical and experimental investigation of multi-domain protein folding and conformational dynamics
多域蛋白质折叠和构象动力学的理论和实验研究
- 批准号:
9769815 - 财政年份:2018
- 资助金额:
$ 45.81万 - 项目类别:
Molecular regulation of immunity to viral infections
病毒感染免疫的分子调节
- 批准号:
9028083 - 财政年份:2015
- 资助金额:
$ 45.81万 - 项目类别:
SELECTIVE MITOCHONDRIAL AUTOPHAGY IN THE MAINTENANCE OF GENOME STABILITY
选择性线粒体自噬维持基因组稳定性
- 批准号:
8089250 - 财政年份:2010
- 资助金额:
$ 45.81万 - 项目类别:
SELECTIVE MITOCHONDRIAL AUTOPHAGY IN THE MAINTENANCE OF GENOME STABILITY
选择性线粒体自噬维持基因组稳定性
- 批准号:
7963177 - 财政年份:2010
- 资助金额:
$ 45.81万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 45.81万 - 项目类别:
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 45.81万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 45.81万 - 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
- 批准号:
10735130 - 财政年份:2023
- 资助金额:
$ 45.81万 - 项目类别: