Development and Translation of novel SiC encapsulation thin film for chronic auditory nerve implant electrodes
用于慢性听神经植入电极的新型 SiC 封装薄膜的开发和转化
基本信息
- 批准号:10220177
- 负责人:
- 金额:$ 74.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-10 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcoustic NerveAddressAgingArchitectureAuditory ProsthesisBasic ScienceBody FluidsBrainBrain StemCeramicsChemicalsChronicClinicalCochlear ImplantsComplexConsultDataDepositionDevelopmentDevicesElectrodesElectronicsEncapsulatedEnvironmentExtravasationFailureFelis catusFilmGeometryGoldHearingHumanImplantImplanted ElectrodesIn VitroInstitutesLeadLife ExpectancyLongevityMechanicsMedical DeviceMetalsMethodsMicroelectrodesOperative Surgical ProceduresPatientsPerformancePeripheralPeripheral NervesPhasePilot ProjectsPolymersProcessPropertyPublishingReproducibilityResearchRiskRodentRouteSafetySchemeSemiconductorsSterilizationStructureStudy SubjectSurfaceSystemTarget PopulationsTechniquesTechnologyTestingTexasThinnessTimeTranslatingTranslationsUnited States National Institutes of HealthUniversitiesUtahWireless TechnologyWorkbasebiomaterial compatibilitybrain computer interfacecommercializationdensitydesigndielectric propertyelectric impedanceelectrical propertyexpectationfollow-uphuman subjectimplantable deviceimplantationimprovedin vitro testingin vivomicrosystemsnervous system disorderneural implantneuroprosthesisneurotransmissionnext generationnonhuman primatenovelparyleneperformance testsphase 2 designsrelating to nervous systemrisk mitigationsilicon carbidestandard of caresurgical riskvoltage
项目摘要
Abstract
A range of neurological diseases are now being researched or treated using fully implantable
electronic systems to either record or modulate brain activity in humans. These implants are
currently being protected using polymer coatings that envelop the implant and help keep body
fluids away from the sensitive electronics. Brain implants with complex three-dimensional
geometries, like the Utah Electrode Array (UEA) provide a challenge for current encapsulation
techniques. Parylene has been the gold standard for encapsulation of neural and biomedical
implants in general due to its well-suited combination of biocompatibility, electrical properties and
chemical inertness. However recording capabilities of long-term neural implants (>6 months)
encapsulated with Parylene show signs of degradation. To address this problem, we propose to
develop and evaluate performance and biocompatibility/safety of a new Silicon Carbide (SiC)
based encapsulation designed to extend the long term stability and implantable lifetime for a high
density Utah Slant Electrode Array (HD-USEA) in line with lifetime expectations for conventional
cochlea implant electrodes. The HD-USEA is used as penetrating auditory nerve electrode in a
new type of intracranial auditory prosthesis that targets the auditory nerve en route to the
brainstem in order to substantially improve hearing performance over the current standard of care,
the cochlear implant (CI) (NIH 1UG3NS107688-01).
SiC has been studied in the past as encapsulation and electrode material due to its outstanding
inherent material properties. This encapsulation layer, novel to biomedical field, will retain all the
advantages of Parylene while utilizing vastly superior dielectric properties of silicon carbide layer
to create a much longer lasting and more electrically stable biomedical implants. This layer
encapsulation scheme may be seamlessly incorporated into our existing fabrication process flow
for our flagship product, the UEA. This encapsulation will work on different surfaces (metal,
semiconductor, polymer, ceramic) and on devices with integrated wireless components making it
ideal for coating any complex medical device intended for long term implant. Our preliminary
results with silicon carbide coated UEA are very promising in support of the proposed work. We
have shown that silicon carbide yields more stable leakage current, and stable impedance (with
<5% change). This superior performance of suggests its potential usefulness for chronic implants
with complex surface geometries.
抽象的
目前正在研究或使用完全植入式治疗一系列神经系统疾病
记录或调节人类大脑活动的电子系统。这些植入物是
目前正在使用聚合物涂层进行保护,该涂层包裹着植入物并有助于保持身体健康
流体远离敏感电子设备。具有复杂三维结构的大脑植入物
诸如犹他电极阵列 (UEA) 之类的几何形状为当前封装带来了挑战
技术。聚对二甲苯已成为神经和生物医学封装的黄金标准
由于其生物相容性、电性能和
化学惰性。然而,长期神经植入物的记录能力(> 6 个月)
用聚对二甲苯封装显示出降解迹象。为了解决这个问题,我们建议
开发并评估新型碳化硅 (SiC) 的性能和生物相容性/安全性
基于封装的设计旨在延长长期稳定性和可植入寿命,以实现高
密度犹他倾斜电极阵列 (HD-USEA) 符合传统的寿命预期
耳蜗植入电极。 HD-USEA 用作穿透性听觉神经电极
新型颅内听觉假体,以听觉神经为目标
脑干,以便在当前护理标准的基础上大幅提高听力表现,
人工耳蜗 (CI) (NIH 1UG3NS107688-01)。
SiC由于其优异的性能,过去一直作为封装和电极材料进行研究。
固有的材料特性。这种封装层对于生物医学领域来说是新颖的,将保留所有
发挥聚对二甲苯的优点,同时利用碳化硅层极其优越的介电性能
创造出更持久、电气更稳定的生物医学植入物。这一层
封装方案可以无缝地融入我们现有的制造工艺流程中
我们的旗舰产品 UEA。这种封装适用于不同的表面(金属、
半导体、聚合物、陶瓷)以及具有集成无线组件的设备
非常适合涂覆任何用于长期植入的复杂医疗设备。我们的初步
碳化硅涂层 UEA 的结果非常有希望支持所提出的工作。我们
已经表明碳化硅产生更稳定的漏电流和稳定的阻抗(与
<5% 变化)。这种卓越的性能表明其对于慢性植入物的潜在用途
具有复杂的表面几何形状。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stuart F Cogan其他文献
Stuart F Cogan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stuart F Cogan', 18)}}的其他基金
Brain glucose deficiency: mechanisms and modulation
脑葡萄糖缺乏:机制和调节
- 批准号:
10730183 - 财政年份:2023
- 资助金额:
$ 74.96万 - 项目类别:
Development and Translation of novel SiC encapsulation thin film for chronic auditory nerve implant electrodes
用于慢性听神经植入电极的新型 SiC 封装薄膜的开发和转化
- 批准号:
10227262 - 财政年份:2019
- 资助金额:
$ 74.96万 - 项目类别:
Scalable Electrode Technology for High Resolution Chronic Recording of Brain
用于大脑高分辨率慢性记录的可扩展电极技术
- 批准号:
9769173 - 财政年份:2018
- 资助金额:
$ 74.96万 - 项目类别:
Scalable Electrode Technology for High Resolution Chronic Recording of Brain
用于大脑高分辨率慢性记录的可扩展电极技术
- 批准号:
10247033 - 财政年份:2018
- 资助金额:
$ 74.96万 - 项目类别:
Scalable Electrode Technology for High Resolution Chronic Recording of Brain
用于大脑高分辨率慢性记录的可扩展电极技术
- 批准号:
10478958 - 财政年份:2018
- 资助金额:
$ 74.96万 - 项目类别:
On-Site Multiplexed GMO Detector to Facilitate Traceability
现场多重转基因检测器促进可追溯性
- 批准号:
8057539 - 财政年份:2011
- 资助金额:
$ 74.96万 - 项目类别:
Cell-based Model for Electrical Stimulation Safety Studies
用于电刺激安全研究的细胞模型
- 批准号:
8057902 - 财政年份:2011
- 资助金额:
$ 74.96万 - 项目类别:
Multi-electrode Arrays with Non-hermetic Encapsulation for Neural Prostheses
用于神经假体的非气密封装多电极阵列
- 批准号:
7804292 - 财政年份:2010
- 资助金额:
$ 74.96万 - 项目类别:
Wireless Multichannel Electrocorticogram Recording for Epilepsy Monitoring
用于癫痫监测的无线多通道皮质电图记录
- 批准号:
7747371 - 财政年份:2009
- 资助金额:
$ 74.96万 - 项目类别:
Wireless ECoG Recording for Epilepsy Monitoring
用于癫痫监测的无线 ECoG 记录
- 批准号:
8524363 - 财政年份:2009
- 资助金额:
$ 74.96万 - 项目类别:
相似国自然基金
Timm8A突变下调aralar1蛋白致听神经病耳聋机制及治疗方法研究
- 批准号:32371044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
改良迷路入路听神经瘤切除术关键技术与耳蜗纤维化影响因素及其机制研究
- 批准号:82371136
- 批准年份:2023
- 资助金额:73 万元
- 项目类别:面上项目
Wnt信号通路促进耳蜗Frizzled10阳性神经干细胞再生听神经元的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
由胶质样支持细胞特异表达基因突变致听神经病谱系障碍的新机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
β2微球蛋白触发核转录因子-κB调控听神经瘤生长的机制研究
- 批准号:82273035
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Cell fate determination in the early development of the otic lineage in human inner ear organoids
人内耳类器官耳谱系早期发育中的细胞命运决定
- 批准号:
10444917 - 财政年份:2021
- 资助金额:
$ 74.96万 - 项目类别:
Cell fate determination in the early development of the otic lineage in human inner ear organoids
人内耳类器官耳谱系早期发育中的细胞命运决定
- 批准号:
10645166 - 财政年份:2021
- 资助金额:
$ 74.96万 - 项目类别:
Cell fate determination in the early development of the otic lineage in human inner ear organoids
人内耳类器官耳谱系早期发育中的细胞命运决定
- 批准号:
10201849 - 财政年份:2021
- 资助金额:
$ 74.96万 - 项目类别: