Novel Zinc-Nanocomposite Materials for Pediatric Bioresorbable Cardiovascular Stents
用于儿科生物可吸收心血管支架的新型锌纳米复合材料
基本信息
- 批准号:10210294
- 负责人:
- 金额:$ 43.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAlloysAnatomyAnimal ModelAortaAortic coarctationBiological ProcessBlood VesselsCaliberCardiovascular systemCathetersChildChildhoodCongenital AbnormalityCongenital Heart DefectsCoronary arteryCorrosionDevelopmentDiseaseElementsEnsureEvaluationFailureFamily suidaeFatigueGeometryGoalsGrowthHyperplasiaImpairmentImplantIn VitroInfantInflammationInterventionKnowledgeLungManufactured MaterialsMechanicsMetalsObstructionOperative Surgical ProceduresPediatricsPerformancePharmaceutical PreparationsPlatelet aggregationPolymersPropertyPulmonary artery structureRadialRecording of previous eventsResearchRestRiskSerious Adverse EventStenosisStentsStressStructureTestingThoracic Surgical ProceduresThrombosisTissuesToxic effectUnited StatesZincartery occlusionartery stenosisbasebiomaterial compatibilityclinical applicationcombatcongenital heart disordercostdesignductileimprovedin vivomanufacturabilitymechanical propertiesmeltingmetallicityminimally invasivenanocompositenanoparticleneonatenovelpatient populationpediatric patientspressurerestenosistherapy design
项目摘要
ABSTRACT
Many infants with congenital heart disease are born with obstruction in the aorta (aortic coarctation) or in the
pulmonary arteries. Options for adults with these severe vascular obstructions include medications, surgery,
and catheter-based interventions such as stents. For pediatric patients that do not respond to medications,
surgery posts increased risks, and stents are not recommended because growing children require stents that
either grow with the child, or biodegrade after tissue remodeling, so that the developing tissues can grow with
the rest of the body. Unfortunately, most bioresorbable stents (BRS) in the pipeline are polymer stents
designed for coronary arteries. As such, these stents are too soft to handle aortic and pulmonary pressures,
and too small. Bioabsorbable metals are an attractive alternative for BRS. Metals have a higher mechanical
strength and toughness than polymers, and many have a proven history of biocompatibility in vivo. One such
metal is zinc. As an essential element in basic biological functions, zinc is well tolerated by living tissues, and
recent in vivo studies have demonstrated that zinc has a steady corrosion rate with no severe adverse events.
Furthermore, zinc has greater elongation to failure than other commonly studied metals for stents – important
for expandable stent deployment. These properties make zinc an excellent candidate for pediatric BRS.
However, pure zinc is mechanically weak, and requires alloying to the increase its strength. Unfortunately, this
often comes at the cost of other favorable properties, such as corrosion rate, ductility, and/or biocompatibility.
Recently, reinforcing metallic materials with nanoparticles has demonstrated great potential as a strategy to
significantly enhance mechanical properties. By using nanoparticle-dispersions, zinc’s mechanical properties
can be improved significantly while retaining the favorable properties of zinc. Therefore, our hypothesis is that
zinc-nanocomposites can be used to manufacture BRS suitable for pediatric applications that maintain
sufficient structural integrity for 4-6 months before completely degrading into non-toxic byproducts. The
development of a pediatric BRS fabricated using zinc-nanocomposite for the treatment of congenital heart
disease will be achieved by pursuing the following aims: Aim 1 – Optimize zinc and nanoparticle combination
to strengthen zinc-nanocomposite materials for manufacturing of functional pediatric BRS. Aim 2 –
Characterize the biocompatibility, and mechanical properties of zinc- nanocomposites in vitro. Aim 3 – Assess
in vivo efficacy and biocompatibility of zinc-nanocomposite stents in a rapidly growing pig animal model. The
anticipated results will provide much needed guidance to further fine tune the core materials. Ultimately, a
mechanically robust, biocompatible, and biodegradable stent has the potential to revolutionize the treatment of
arterial obstructions in pediatrics patients by eliminating the need for open chest surgeries in infants and older
children. Additionally, the knowledge gained from this research will have a broad impact on the development of
safe and efficacious bioabsorbable metallic implants for many clinical applications.
抽象的
许多患有先天性心脏病的婴儿出生时就有主动脉阻塞(主动脉缩窄)或主动脉阻塞。
患有这些严重血管阻塞的成年人的选择包括药物、手术、
对于对药物没有反应的儿科患者,以及基于导管的干预措施,例如支架。
手术后风险增加,不建议使用支架,因为成长中的儿童需要支架
要么与孩子一起成长,要么在组织重塑后生物降解,以便发育中的组织可以与孩子一起成长
不幸的是,大多数生物可吸收支架(BRS)都是聚合物支架。
专为冠状动脉设计,这些支架太软,无法承受主动脉和肺动脉压力,
且太小,可生物吸收的金属是 BRS 的一个有吸引力的替代品,具有更高的机械性能。
强度和韧性优于聚合物,并且许多聚合物具有经过验证的体内生物相容性。
金属是锌,作为基本生物功能的必需元素,锌具有良好的生物组织耐受性。
最近的体内研究表明,锌具有稳定的腐蚀速率,没有严重的不良事件。
此外,与其他常用的支架金属相比,锌的断裂伸长率更高——这一点很重要
这些特性使锌成为儿科 BRS 的绝佳候选者。
然而,纯锌的机械性能较弱,需要合金化来提高其强度。
通常是以牺牲其他有利性能为代价的,例如腐蚀速率、延展性和/或生物相容性。
最近,用纳米颗粒增强金属材料被证明具有作为一种策略的巨大潜力
通过使用纳米粒子分散体,锌的机械性能显着提高。
可以在显着保留锌的有利特性的同时进行改进。因此,我们的假设是:
锌纳米复合材料可用于制造适用于儿科应用的 BRS,
4-6 个月内具有足够的结构完整性,然后完全降解为无毒副产品。
开发使用锌纳米复合材料制造的用于治疗先天性心脏病的儿科 BRS
疾病将通过追求以下目标来实现: 目标 1 – 优化锌和纳米颗粒的组合
强化用于制造功能性儿科 BRS 的锌纳米复合材料 目标 2 –
体外表征锌纳米复合材料的生物相容性和机械性能 目标 3 – 评估。
锌纳米复合材料支架在快速生长的猪动物模型中的体内功效和生物相容性。
预期结果将为进一步微调核心材料提供急需的指导。
机械坚固、生物相容且可生物降解的支架有可能彻底改变以下疾病的治疗
通过消除婴儿和老年人开胸手术的需要来治疗儿科患者的动脉阻塞
此外,从这项研究中获得的知识将对儿童的发展产生广泛的影响。
适用于许多临床应用的安全有效的生物可吸收金属植入物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Steven Levi其他文献
Daniel Steven Levi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Steven Levi', 18)}}的其他基金
Novel Zinc-Nanocomposite Materials for Pediatric Bioresorbable Cardiovascular Stents
用于儿科生物可吸收心血管支架的新型锌纳米复合材料
- 批准号:
10450158 - 财政年份:2019
- 资助金额:
$ 43.91万 - 项目类别:
相似国自然基金
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有序相变对FeCo基软磁合金磁性与强韧性能的影响机理
- 批准号:52301235
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
低氧分压高温条件下籽晶氧化对镍基单晶高温合金晶体生长的影响
- 批准号:52301064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
合金高熵化对玻璃态合金的动力学特征及功能特性的影响
- 批准号:52371160
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
辐照条件下温度与Sn含量对锆合金中Sn偏聚、辐照缺陷及其交互作用的影响研究
- 批准号:12375272
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 43.91万 - 项目类别:
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 43.91万 - 项目类别:
A First-in-Class Antibody Therapeutic for Treatment of Acromegaly
用于治疗肢端肥大症的一流抗体疗法
- 批准号:
10082375 - 财政年份:2020
- 资助金额:
$ 43.91万 - 项目类别:
Novel Zinc-Nanocomposite Materials for Pediatric Bioresorbable Cardiovascular Stents
用于儿科生物可吸收心血管支架的新型锌纳米复合材料
- 批准号:
10450158 - 财政年份:2019
- 资助金额:
$ 43.91万 - 项目类别:
Mechanisms Mediating Osseointegration of 3D Printed Titanium Constructs
3D 打印钛结构的骨整合调节机制
- 批准号:
10333283 - 财政年份:2019
- 资助金额:
$ 43.91万 - 项目类别: