University of Iowa – 3T ESP MRI Scanner
爱荷华大学 — 3T ESP MRI 扫描仪
基本信息
- 批准号:10170638
- 负责人:
- 金额:$ 195万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AgingAlgorithmsBiomedical EngineeringBipolar DisorderBrainCommunitiesCoupledDevelopmentDiffusionDiseaseEnvironmentEquipmentFacultyFeesFinancial SupportFundingFutureGrantHeadImageInstitutesInstitutionIowaMagnetic ResonanceMagnetic Resonance ImagingMalignant NeoplasmsMetabolismMidwestern United StatesNeurodegenerative DisordersNeurosciencesPerformanceRadiology SpecialtyResearchResearch PersonnelResearch SubjectsResearch SupportResolutionResourcesScanningTimeTissuesUnited States National Institutes of HealthUniversitiesanimal imagingbasebioimagingbiophysical modelcollegecosthuman imagingimaging capabilitiesneuroimagingnovelprogramsresearch facilitysquare foot
项目摘要
The University of Iowa is requesting funds to acquire the GE Extreme Slewrate Performance (ESP) 3T
head-only scanner. The ESP scanner provides high end gradient performance (Amplitude=115 mT/m and
Slewrate=700T/m/s), which will offer significant improvements for diffusion imaging. The high slew rate
performance provides a factor of two reduction in echo-spacing across all resolutions typically used for
neuroimaging. Such capabilities will result in the ability to study tissue microstructure, which has been limited in
the past by gradient performance. This gradient performance coupled with the MUSSELS based algorithms
being developed in the Magnetic Resonance Research Facility (MRRF) will provide the ability to assess tissue
microstructure at high resolution when using the high b-values needed to employ biophysical models to
characterize tissue microstructure. The ESP scanner will also provide lower SAR that will enhance our T1ρ
imaging efforts. In addition, the scanner provides a more friendly environment for research subjects. This
scanner is needed to support the rapidly expanding neuroimaging community that was been brought about by
the formation of the Iowa Neuroscience Institute (INI). The INI has hired ten faculty in the past three years that
are using neuroimaging as part of their research program. We have outgrown the time available on our existing
research 3T scanner and additional resources are needed to support these neuroimaging efforts.
The MRRF serves as a Core University Facility and houses the only research dedicated scanning facilities
in the State of Iowa. The proposed scanner would support 26 investigators with 33 NIH funded grants with an
additional 15 pending NIH grants. The MRRF supports the research program of investigators from 6 colleges
and 15 departments across campus. The facility also supports the research efforts from other state institutions
(e.g. Iowa State University) as well as the Midwest. These investigators are a highly productive group, which
study a variety of diseases including bipolar disorder, brain development, aging, neurodegenerative disorders,
and cancer. The MRRF is an active research group who are undertaking the development of novel imaging
sequences to support our large number of users. This includes novel imaging sequences to assess 1) tissue
microstructure, 2) brain function, 3) cancer, and 4) metabolism. These projects would significantly benefit from
the proposed scanner and provide future imaging capabilities for users of the facility.
There is strong institution commitment for this equipment. The proposed ESP 3T scanner will be located in
the $120 million Pappajohn Biomedical Discovery Building (PBDB) and the Iowa Institute for Biomedical
Imaging (IIBI) was allocated 31,000 square feet of space in this building for human and animal imaging. To
help support the scanner, the Department of Radiology and Biomedical Engineering have recently hired 3
additional faculty who are MR physicists. Finally, the Department of Radiology will cover the costs to install the
ESP scanner and will provide financial support in case user fees are unable to cover expenses for the facility.
爱荷华大学正在申请资金购买 GE Extreme Slewrate Performance (ESP) 3T
ESP 扫描仪提供高端梯度性能(振幅 = 115 mT/m 和
转换速率=700T/m/s),这将为扩散成像提供显着的改进。
性能可将所有通常用于的分辨率的回声间隔减少两倍
这种能力将导致研究组织微观结构的能力,而这在医学领域是有限的。
这种梯度性能与基于 MUSSELS 的算法相结合。
磁共振研究设施(MRRF)正在开发的技术将提供评估组织的能力
当使用生物物理模型所需的高 b 值时,可以以高分辨率获得微观结构
ESP 扫描仪还将提供较低的 SAR,从而增强我们的 T1ρ。
此外,扫描仪的工作为研究对象提供了更友好的环境。
需要扫描仪来支持快速扩展的神经影像社区
爱荷华州神经科学研究所 (INI) 的成立在过去三年中聘用了 10 名教职人员。
正在使用神经影像作为他们研究计划的一部分,但我们现有的时间已经不够了。
需要研究 3T 扫描仪和其他资源来支持这些神经影像学工作。
MRRF 作为核心大学设施,拥有唯一的研究专用扫描设施
在爱荷华州,拟议的扫描仪将为 26 名研究人员提供 33 项 NIH 资助的资助。
MRRF 还支持 6 所大学研究人员的研究计划,还有 15 项待决的 NIH 拨款。
该设施还支持其他州立机构的研究工作。
(例如爱荷华州立大学)以及中西部的这些研究人员是一个高产的群体。
研究多种疾病,包括双相情感障碍、大脑发育、衰老、神经退行性疾病、
MRRF 是一个活跃的研究小组,致力于开发新型成像技术。
序列来支持我们大量的用户,这包括用于评估 1) 组织的新颖成像序列。
微观结构、2) 脑功能、3) 癌症和 4) 新陈代谢这些项目将大大受益。
拟议的扫描仪并为该设施的用户提供未来的成像功能。
该设备得到了机构的大力支持。拟议的 ESP 3T 扫描仪将位于
耗资 1.2 亿美元的帕帕约翰生物医学发现大楼 (PBDB) 和爱荷华州生物医学研究所
成像 (IIBI) 在这座大楼内分配了 31,000 平方英尺的空间用于人类和动物成像。
为了帮助支持扫描仪,放射科和生物医学工程系最近聘请了3名
最后,放射科将承担安装该设备的费用。
ESP 扫描仪将在用户费用无法支付设施费用的情况下提供财务支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-band- and in-plane-accelerated diffusion MRI enabled by model-based deep learning in q-space and its extension to learning in the spherical harmonic domain.
通过 q 空间中基于模型的深度学习及其对球谐域学习的扩展,实现多频带和面内加速扩散 MRI。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Mani, Merry;Yang, Baolian;Bathla, Girish;Magnotta, Vincent;Jacob, Mathews
- 通讯作者:Jacob, Mathews
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINCENT A MAGNOTTA其他文献
VINCENT A MAGNOTTA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINCENT A MAGNOTTA', 18)}}的其他基金
Suicidality in Bipolar and Major Depression Disorders
双相情感障碍和重度抑郁症的自杀倾向
- 批准号:
10359342 - 财政年份:2022
- 资助金额:
$ 195万 - 项目类别:
Characterization and Enhancement of Functional T1rho Imaging
功能性 T1rho 成像的表征和增强
- 批准号:
9925775 - 财政年份:2017
- 资助金额:
$ 195万 - 项目类别:
Cerebellar metabolism, neural circuits, and symptoms in bipolar disorder
小脑代谢、神经回路和双相情感障碍的症状
- 批准号:
9379194 - 财政年份:2017
- 资助金额:
$ 195万 - 项目类别:
Cerebellar metabolism, neural circuits, and symptoms in bipolar disorder
小脑代谢、神经回路和双相情感障碍的症状
- 批准号:
10208668 - 财政年份:2017
- 资助金额:
$ 195万 - 项目类别:
Cerebellar metabolism, neural circuits, and symptoms in bipolar disorder
小脑代谢、神经回路和双相情感障碍的症状
- 批准号:
10798452 - 财政年份:2017
- 资助金额:
$ 195万 - 项目类别:
University of Iowam - Whole Body 7T MRI Scanner
爱荷华大学 - 全身 7T MRI 扫描仪
- 批准号:
7834427 - 财政年份:2010
- 资助金额:
$ 195万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Minimally-invasive technology for personalized nutritional monitoring
用于个性化营养监测的微创技术
- 批准号:
10693521 - 财政年份:2023
- 资助金额:
$ 195万 - 项目类别:
Neural Operator Learning to Predict Aneurysmal Growth and Outcomes
神经算子学习预测动脉瘤的生长和结果
- 批准号:
10636358 - 财政年份:2023
- 资助金额:
$ 195万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10367144 - 财政年份:2022
- 资助金额:
$ 195万 - 项目类别:
Novel artificial intelligence-based approaches to understand the pathological and genetic drivers of primary tauopathies
基于人工智能的新方法来了解原发性 tau 蛋白病的病理和遗传驱动因素
- 批准号:
10525775 - 财政年份:2022
- 资助金额:
$ 195万 - 项目类别:
Digital biomarkers for Alzheimer's Disease with compact dual-mode brain sensing
具有紧凑型双模式脑传感功能的阿尔茨海默病数字生物标记
- 批准号:
10526163 - 财政年份:2022
- 资助金额:
$ 195万 - 项目类别: