The Effects of the SCN1B Mimetic Peptide Badp1 on the Regulated Intramembrane Proteolysis Pathway
SCN1B 模拟肽 Badp1 对调节膜内蛋白水解途径的影响
基本信息
- 批准号:10676749
- 负责人:
- 金额:$ 2.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2023-12-25
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAdhesionsAffectAnti-Arrhythmia AgentsAreaArrhythmiaAtrial FibrillationBiological AssayBuffersC-terminalCardiacCardiac MyocytesCause of DeathCaviaCell NucleusCell membraneCell modelCellsChinese HamsterClinicalCommunicationComplexDataDevelopmentDrug DesignDrug TargetingElectrophysiology (science)Enzyme Inhibitor DrugsEnzymesExtracellular DomainFellowshipFibroblastsGap JunctionsGene ExpressionGenesGenetic TranscriptionGoalsHeartHourHumanImmunoglobulin DomainImmunoglobulinsImplantIn VitroIncidenceIntercalated discInvestigationIon ChannelKnowledgeLabelLigandsLungMannitolMapsMeasuresMediatingMentorsMessenger RNAMolecularMolecular Mechanisms of ActionMonitorNamesNeonatalOpticsPathologyPathway interactionsPatientsPeptide HydrolasesPeptidesPerfusionPharmaceutical PreparationsProcessProductionProteinsProteolysisRattusReportingResearchScienceSodium ChannelSodium ChlorideStructureTechnical ExpertiseTechniquesTestingTherapeuticTimeTissuesTrainingTransmission Electron MicroscopyUp-RegulationVentricularWestern BlottingWidthWorkbeta-site APP cleaving enzyme 1comparison controldrug discoverydrug productionelectric impedanceestablished cell lineexperimental studyextracellulargamma secretasegene productguinea pig modelheart rhythmin vivoinhibitorinsightknock-downmimeticsnanonovelnovel strategiesoverexpressionpeptidomimeticspreventprotective effectprotein expressionresponsesequential proteolysisskillsstable cell linesudden cardiac deathtranscriptome sequencingtreatment effectvoltage
项目摘要
Project Summary
Sudden cardiac death (SCD) caused by arrhythmia continues to be prevalent in the US and the world. Many
drugs that aim to correct or prevent arrhythmias target ion channels, including the voltage-gated sodium
channel (VGSC). The perinexus is a specialized nanodomain of the intercalated disc directly adjacent to gap
junctions. It has been shown by our group that the VGSC subunit SCN1B/β1 is critical to perinexal adhesion.
Loss of adhesion and widening of the perinexus leads to slowed conduction velocity and increased incidence
of arrhythmia. As yet, no drug targeting β1 has yet been explored in preventing arrhythmias. My preliminary
data indicates that >24 hour treatment with βadp1, a mimetic of the β1 extracellular domain, may result in
upregulation of the VGSC β1 subunit, as well as increased levels of intercellular adhesion in β1-expressing
1610 cells, as measured by electric cell-substrate impedance sensing (ECIS). The proposed research aims to
test the overarching hypothesis that targeting the adhesion function of the VGSC β1 subunit with βadp1 will
result in increased abundance of β1 in the plasma membrane, increased β1-mediated adhesion, and a
narrower perinexus over 24-48 hours of treatment. Furthermore, I will test the mechanistic hypothesis that
βadp1 upregulates intramembrane proteolysis (RIP) of the β1 subunit, which was recently reported to alter
gene transcription of many important electrogenic proteins, including VGSC subunits. In specific aim 1, an
established cell line stably expressing the VGSC β1 subunit (Chinese hamster lung fibroblast 1610 cells) and
isolated neonatal rat cardiomyocytes will be used to assay effects of βadp1 treatment in vitro over 48 hour
time-courses in the presence and absence of inhibitors of RIP. Assessments will include ECIS assays of
intercellular adhesion, and monitoring of protein and gene expression responses by Western blotting,
quantitative IF, RNA-Seq and qPCR. In specific aim 2, effects of βadp1 treatment over 48 hours in vivo will be
tested in guinea pigs, including studies of cardiac conduction using optical mapping, perinexal ultrastructure
using transmission electron microscopy and monitoring of protein and gene expression responses using similar
approaches to aim 1. The goal of my research is to gain further insight into βadp1 mode-of-action and its
effects on heart structure and electrophysiological function, as well as to use this knowledge as a path to
develop therapeutics for preventing fatal arrhythmias. In addition to completing the research aims, the purpose
of this fellowship is to enable me to gain training in new techniques and areas of research, to undertake
professional development, and also develop skills in mentoring and communicating science. The research will
be performed under the guidance and expertise of Dr. Rob Gourdie. Training in optical mapping of electrical
activation will be done with Dr. Steve Poelzing, training in RNA-Seq analyses will be under the expertise of Dr.
Yassine Sassi, and training in ECIS will be done with Dr. Charles Keese.
项目概要
由心律失常引起的心源性猝死(SCD)在美国和世界各地仍然很普遍。
旨在纠正或预防心律失常的药物靶向离子通道,包括电压门控钠
通道(VGSC)是与间隙直接相邻的闰盘的特殊纳米域。
我们的研究小组已经证明,VGSC 亚基 SCN1B/β1 对于外周粘连至关重要。
粘连丧失和会周增宽导致传导速度减慢和发病率增加
迄今为止,尚未探索出针对β1的药物来预防心律失常。
数据表明,用 βadp1(β1 细胞外结构域的模拟物)治疗 >24 小时可能会导致
VGSC β1 亚基上调,以及表达 β1 的细胞间粘附水平增加
1610 细胞,通过细胞-基底阻抗传感 (ECIS) 进行测量。
测试总体假设,即用 βadp1 靶向 VGSC β1 亚基的粘附功能将
导致质膜中 β1 丰度增加,β1 介导的粘附增加,以及
治疗 24-48 小时后会阴连接变窄 此外,我将检验以下机制假设。
βadp1 上调 β1 亚基的膜内蛋白水解 (RIP),最近有报道称其会改变
许多重要的生电蛋白的基因转录,包括 VGSC 亚基。在具体目标 1 中,
建立稳定表达VGSC β1亚基的细胞系(中国仓鼠肺成纤维细胞1610细胞)
分离的新生大鼠心肌细胞将用于检测 βadp1 体外治疗 48 小时的效果
存在和不存在 RIP 抑制剂的时间进程评估将包括 ECIS 分析。
细胞间粘附,并通过蛋白质印迹监测蛋白质和基因表达反应,
IF、RNA-Seq 和 qPCR 在具体目标 2 中,将在体内定量 βadp1 处理超过 48 小时的效果。
在豚鼠身上进行测试,包括使用光学测绘、周周超微结构研究心脏传导
使用透射电子显微镜并使用类似的方法监测蛋白质和基因表达反应
实现目标的方法 1. 我的研究目标是进一步了解 βadp1 的作用模式及其作用
对心脏结构和电生理功能的影响,以及利用这些知识作为途径
开发预防致命性心律失常的疗法除了完成研究目标外。
这项研究金的目的是使我能够获得新技术和研究领域的培训,以便进行
专业发展,并培养指导和传播科学的技能。
在 Rob Gourdie 博士的指导和专业知识下进行电气光学测绘培训。
激活将由 Steve Poelzing 博士完成,RNA-Seq 分析培训将在 Steve Poelzing 博士的专业知识下进行。
Yassine Sassi 和 ECIS 培训将由 Charles Keese 博士完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Williams其他文献
Zachary Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Viral subversion of intercellular coupling during myocarditis
心肌炎期间细胞间耦合的病毒颠覆
- 批准号:
10522824 - 财政年份:2022
- 资助金额:
$ 2.42万 - 项目类别:
Viral subversion of intercellular coupling during myocarditis
心肌炎期间细胞间耦合的病毒颠覆
- 批准号:
10656515 - 财政年份:2022
- 资助金额:
$ 2.42万 - 项目类别:
The Role of the Sodium Channel Beta Subunit in Cardiac Conduction
钠通道β亚基在心脏传导中的作用
- 批准号:
9923757 - 财政年份:2018
- 资助金额:
$ 2.42万 - 项目类别: