Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
基本信息
- 批准号:10163556
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AnimalsBiochemistryBiogenesisBiological ModelsCaenorhabditis elegansCell Differentiation processCell ProliferationCellsCellular biologyComplexCytoplasmDefectDiabetes MellitusDiffusionDiseaseEndoplasmic ReticulumEndosomesEstrogen receptor positiveEukaryotic CellFutureGenesGeneticGoalsGolgi ApparatusHomeostasisImageImmune System DiseasesInterventionIntracellular MembranesLaboratoriesLeadLinkLipidsLocationLysosomesMalignant NeoplasmsMediatingMembraneMethodologyMolecularMovementMutationNerve DegenerationNeurodegenerative DisordersOrganellesPathway interactionsPlayProcessProtein SortingsProteinsReceptor SignalingRegulationResearchResolutionSorting - Cell MovementSystemTransmembrane TransportTumor SuppressionVesicleWorkinsightintracellular protein transportprotein degradationprotein transportstructural biologytherapeutic targettrafficking
项目摘要
PROJECT SUMMARY
How the intracellular membrane system of eukaryotic cells is configured and maintained is a fundamental
problem in cell biology. Deficiencies in this organization often lead to disease. The overarching goal of my
laboratory is to define the molecular mechanisms that regulate membrane dynamics, including vesicle
biogenesis, organelle trafficking, and protein sorting in the early secretory and endocytic pathways of metazoan
cells. We aim to determine how normal membrane transport contributes to cellular homeostasis and understand
the molecular basis for disease states that emerge when trafficking pathways are disrupted. Using a combination
of model systems, structural biology, biochemistry, genetics, and high-resolution subcellular imaging, our studies
focus on two essential trafficking pathways necessary for protein and lipid export from the endoplasmic reticulum
(ER) and protein turnover within lysosomes via a multivesicular endosome (MVE) intermediate. Mutations in
several factors that regulate these processes have been implicated in cancer, diabetes, immune dysfunction,
and neurodegeneration. Thus, deciphering the fundamental principles underlying the regulation of ER export
and MVE biogenesis should facilitate the future identification of therapeutic targets for disease intervention. One
major focus of my research has been elucidating how the early secretory pathway is organized. Our findings
revealed the existence of a conserved membrane interface, which links subdomains on the endoplasmic
reticulum (ER) that produce COPII-coated transport carriers to juxtaposed ER-Golgi intermediate compartments
(ERGIC). We identified Trk-fused gene (TFG) as a key constituent of this interface and have shown that its
inhibition uncouples ER and ERGIC membranes and leads to the isotropic diffusion of COPII-coated carriers,
reducing the efficiency of cargo secretion. My second research focus is aimed at understanding the mechanisms
that direct the formation of MVEs, which bud intralumenal vesicles (ILVs) into their interior to sequester
membrane-associated cargoes from the cytoplasm. Eventual fusion of MVEs with lysosomes results in the
degradation of ILVs and their associated proteins, which plays a key role in tumor suppression by governing the
capture and sequestration of signaling receptors. Using C. elegans, we have developed a new, highly simplified,
and genetically tractable system to investigate how components of the endosomal sorting complex required for
transport (ESCRT) machinery enables the movement of endocytosed cargo to MVEs and ILVs in the context of
an intact, developing animal. Our future work will continue to capitalize on evolving methodologies to further
establish how COPII-mediated transport and ESCRT-mediated MVE biogenesis are properly regulated. A better
understanding of these processes will yield key insights into the homeostatic controls that sustain normal protein
trafficking in the secretory and endocytic pathways during cell proliferation and differentiation.
项目概要
真核细胞的细胞内膜系统如何配置和维持是一个基础
细胞生物学问题。该组织的缺陷常常导致疾病。我的总体目标
实验室的目标是定义调节膜动力学的分子机制,包括囊泡
后生动物早期分泌和内吞途径中的生物发生、细胞器运输和蛋白质分选
细胞。我们的目标是确定正常的膜运输如何促进细胞稳态并了解
当贩运途径被破坏时出现的疾病状态的分子基础。使用组合
我们的研究涉及模型系统、结构生物学、生物化学、遗传学和高分辨率亚细胞成像
重点关注内质网蛋白质和脂质输出所需的两条重要运输途径
(ER) 和溶酶体内的蛋白质通过多囊泡内体 (MVE) 中间体进行周转。突变在
调节这些过程的几个因素与癌症、糖尿病、免疫功能障碍、
和神经退行性变。因此,解读 ER 出口监管的基本原则
MVE 的生物发生应有助于未来确定疾病干预的治疗靶点。一
我研究的主要重点是阐明早期分泌途径是如何组织的。我们的发现
揭示了保守膜界面的存在,该界面连接内质上的子结构域
网状结构 (ER),产生 COPII 涂层的运输载体到并置的 ER-高尔基中间室
(活力)。我们将 Trk 融合基因 (TFG) 确定为该界面的关键组成部分,并表明其
抑制作用使 ER 和 ERGIC 膜解偶联,导致 COPII 包被载体的各向同性扩散,
降低货物分泌效率。我的第二个研究重点是了解其机制
引导 MVE 的形成,MVE 使腔内囊泡 (ILV) 萌芽到其内部以隔离
来自细胞质的膜相关货物。 MVE 与溶酶体的最终融合导致
ILV 及其相关蛋白的降解,通过控制 ILV 及其相关蛋白在肿瘤抑制中发挥关键作用
信号受体的捕获和隔离。使用秀丽隐杆线虫,我们开发了一种新的、高度简化的、
和遗传易处理系统来研究内体分选复合物的成分如何
运输(ESCRT)机械使内吞货物能够在以下情况下移动到 MVE 和 ILV:
一个完整的、正在发育的动物。我们未来的工作将继续利用不断发展的方法来进一步
确定如何正确调节 COPII 介导的运输和 ESCRT 介导的 MVE 生物发生。更好的
了解这些过程将有助于深入了解维持正常蛋白质的稳态控制
细胞增殖和分化过程中分泌和内吞途径的运输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anjon Audhya其他文献
Anjon Audhya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anjon Audhya', 18)}}的其他基金
Mechanisms Underlying Axonopathy in Hereditary Spastic Paraplegia
遗传性痉挛性截瘫轴突病的潜在机制
- 批准号:
10463959 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Mechanisms Underlying Axonopathy in Hereditary Spastic Paraplegia
遗传性痉挛性截瘫轴突病的潜在机制
- 批准号:
10611493 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Graduate Training in Molecular and Cellular Pharmacology
分子和细胞药理学研究生培训
- 批准号:
10402849 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Graduate Training in Molecular and Cellular Pharmacology
分子和细胞药理学研究生培训
- 批准号:
10612465 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Graduate Training in Molecular and Cellular Pharmacology
分子和细胞药理学研究生培训
- 批准号:
10175159 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10093102 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10551323 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10576500 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Administrative Supplement: Molecular mechanisms that regulate vesicle formation and transport
行政补充:调节囊泡形成和运输的分子机制
- 批准号:
10796154 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10333222 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
相似国自然基金
基于生物化学与稳定同位素的达里湖水内外源补排机制及演化历史重构
- 批准号:52369014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
施氮与混交对降香黄檀—沉香树植物−土壤−微生物化学计量的影响
- 批准号:32360366
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
独特二聚天然产物Phomoxanthone A 生物合成关键酶学机制研究及衍生物化学酶法构建
- 批准号:32370056
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
富边缘平行排列石墨烯/陶瓷基复合材料的构建及生物化学传感性能
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
真菌漆酶驱动根际腐殖化减低粪肥源雌激素作物吸收的生物化学机理
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Modulation of ribosome velocity as a means to rescue refractory CF-causing variants
调节核糖体速度作为拯救难治性 CF 引起的变异的一种手段
- 批准号:
10463879 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Modulation of ribosome velocity as a means to rescue refractory CF-causing variants
调节核糖体速度作为拯救难治性 CF 引起的变异的一种手段
- 批准号:
10445444 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Identification of genetic and environmental suppressors of mitochondrial dysfunction
线粒体功能障碍的遗传和环境抑制因子的鉴定
- 批准号:
10319607 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Molecular mechanisms that regulate vesicle formation and transport
调节囊泡形成和运输的分子机制
- 批准号:
10093102 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Ribonucleoprotein Biogenesis and Epigenetic Gene Regulation
核糖核蛋白生物发生和表观遗传基因调控
- 批准号:
10363745 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别: