MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
基本信息
- 批准号:10595533
- 负责人:
- 金额:$ 46.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetyltransferaseAffectAntibioticsArsenicArsenicalsArsenitesBiochemicalBiochemistryBiologyBiosensing TechniquesBiosensorCancer EtiologyCardiovascular systemCategoriesChildhoodCrystallographyDevelopmental Delay DisordersDiabetes MellitusEnvironmental CarcinogensEnzymesFlowersFundingGenesGoalsGrantHealthHeart DiseasesHerbicidesHumanHuman MicrobiomeLyaseMalignant NeoplasmsMalignant neoplasm of urinary bladderMetabolic BiotransformationMethylationMethyltransferaseMolecularMolecular GeneticsNational Institute of General Medical SciencesNatural ProductsOxidasesPathway interactionsPeripheral Vascular DiseasesPhysiologicalProteinsQualifyingRecording of previous eventsRegulationResearchResistanceRoleSkin CancerStructureToxic Environmental SubstancesToxic effectToxinUnited StatesVisionantimicrobial drugenzyme structurefallshealth applicationmicrobial genomenervous system disordernovelpermeasepollutantprogramsresistance gene
项目摘要
Project Summary/Abstract: Arsenic is the most pervasive toxin, considered by the EPA to be one the
most significant potential environmental threats to human health. Arsenic exposure is a cause of cancer, heart
disease, childhood developmental delay, and disrupts the human microbiome. Our research program
blossomed during the current funding period of our NIGMS grant, focusing on arsenic transporters
and biotransformations, which modify its availability, speciation, mobility and toxicity. We are uniquely
qualified for this project: over the lifetime of this grant, my group identified and characterized the majority of
ars genes/proteins involved in arsenic transport, biotransformations and resistance and their impact on the
global arsenic biogeocycle. We discovered enzymes of the arsenic methylation cycle and elucidated
mechanisms and structures of the enzymes of biotransformation, developed biosensors for
organoarsenicals herbicides and discovered organoarsenicals with the potential to be novel antimicrobial
agents. My goals for the next five years fall into four categories. 1) Structure/function analysis of enzymes
of arsenic biotransformations. We will elucidate the catalytic cycle of the ArsM arsenite S-
adenosylmethione (SAM) methyltransferase, the ArsH methylarsenite oxidases, the ArsI C-As bond lyases
and the ArsN N-acetyltransferase through biochemical and structural analysis. 2) Regulation and biosensing.
We will determine the structural details of metalloregulation. We will devise new applications for sensing
environmental organoarsenical pollutants. 3) Arsenic transporters; we identified a number of new permeases
for organoarsenicals and will determine the mechanism of transport by a combination of molecular genetics,
biochemistry and crystallography. 4) Arsenical antibiotics; we recently identified two organoarsenical natural
products with antibiotic activity. We will determine the pathways of synthesis and mode of action of
these novel compounds and discover new natural products with potential health applications. My overall
vision is a research program of sufficient breadth to encompass identification of the physiological roles of
known arsenic resistance genes and sufficient depth to elucidate their molecular mechanisms. Microbial
genomes have many uncharacterized arsenic-related genes. There are predicted permeases and enzymes
with no known substrate or function. We predict these are involved in arsenical transport or biotransformations.
We will mine microbial genomes for new ars genes, deduce their evolutionary histories and determine how they
affect cycling of environmental arsenicals. We will discover their physiological functions. Their protein
products will be purified and characterized by biochemical and structural analyses. My overarching theme is
to make substantial contributions to understanding of the global arsenic biogeocycle and its impact on
human health.
项目摘要/摘要:砷是最普遍的毒素,被 EPA 认为是最常见的毒素之一。
对人类健康最重大的潜在环境威胁。砷暴露是癌症、心脏病的一个原因
疾病,儿童发育迟缓,并破坏人类微生物群。我们的研究计划
在我们 NIGMS 赠款的当前资助期内蓬勃发展,重点关注砷转运蛋白
和生物转化,改变其可用性、形态、流动性和毒性。我们是独一无二的
符合该项目的资格:在这笔赠款的整个生命周期中,我的小组确定并描述了大多数
参与砷转运、生物转化和抗性的ars基因/蛋白质及其对砷的影响
全球砷生物地球循环。我们发现了砷甲基化循环的酶并阐明了
生物转化酶的机制和结构,开发生物传感器
有机砷除草剂并发现了具有新型抗菌潜力的有机砷
代理。我未来五年的目标分为四类。 1) 酶的结构/功能分析
砷的生物转化。我们将阐明 ArsM 亚砷酸盐 S- 的催化循环
腺苷甲硫酮 (SAM) 甲基转移酶、ArsH 甲基亚砷酸氧化酶、ArsI C-As 键裂解酶
以及通过生化和结构分析得到的 ArsN N-乙酰转移酶。 2)调节和生物传感。
我们将确定金属调节的结构细节。我们将设计新的传感应用
环境有机砷污染物。 3)砷转运体;我们发现了一些新的渗透酶
对于有机砷,将通过分子遗传学的组合确定运输机制,
生物化学和晶体学。 4)含砷抗生素;我们最近发现了两种有机砷天然
具有抗生素活性的产品。我们将确定其合成途径和作用方式
这些新化合物并发现具有潜在健康应用的新天然产品。我的整体
视觉是一个具有足够广度的研究计划,涵盖了对生理作用的识别
已知的砷抗性基因和足够的深度来阐明其分子机制。微生物
基因组中有许多未表征的与砷相关的基因。有预测的渗透酶和酶
没有已知的底物或功能。我们预测它们参与砷运输或生物转化。
我们将挖掘微生物基因组中的新 ars 基因,推断它们的进化历史并确定它们如何
影响环境砷的循环。我们将发现它们的生理功能。他们的蛋白质
产品将通过生化和结构分析进行纯化和表征。我的首要主题是
为了解全球砷生物地球循环及其对砷的影响做出重大贡献
人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY P. ROSEN其他文献
BARRY P. ROSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY P. ROSEN', 18)}}的其他基金
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
10374036 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
9923901 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS(III)-RESPONSIVE TRANSCRIPTIONAL
AS(III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
8170040 - 财政年份:2010
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS(III)-RESPONSIVE TRANSCRIPTIONAL
AS(III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7954364 - 财政年份:2009
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS (III)-RESPONSIVE TRANSCRIPTIONA
AS (III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7722025 - 财政年份:2008
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS (III)-RESPONSIVE TRANSCRIPTIONA
AS (III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7598285 - 财政年份:2007
- 资助金额:
$ 46.32万 - 项目类别:
THE ATP-COUPLED ARSENICAL PUMP OF ESCHERICHIA COLI
大肠杆菌的 ATP 耦合砷泵
- 批准号:
6395920 - 财政年份:2000
- 资助金额:
$ 46.32万 - 项目类别:
相似国自然基金
排水管网沉积物中抗生素对功能菌降解PAHs的影响机制
- 批准号:
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
再生水灌溉过程中水分动态变化对土壤中抗生素降解的影响与机制研究
- 批准号:52379051
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
环境兽用抗生素暴露对儿童心血管危险因素聚集影响及SCAP-SREBP脂代谢通路基因甲基化调控机制研究
- 批准号:82373593
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the role of short-chain fatty acids in adolescent opioid reinforcement and epigenetic regulation
定义短链脂肪酸在青少年阿片类药物强化和表观遗传调控中的作用
- 批准号:
10576350 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
Defining the role of short-chain fatty acids in adolescent opioid reinforcement and epigenetic regulation
定义短链脂肪酸在青少年阿片类药物强化和表观遗传调控中的作用
- 批准号:
10643363 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
Defining the role of short-chain fatty acids in adolescent opioid reinforcement and epigenetic regulation
定义短链脂肪酸在青少年阿片类药物强化和表观遗传调控中的作用
- 批准号:
10369599 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
10374036 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
9923901 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别: