MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
基本信息
- 批准号:10595533
- 负责人:
- 金额:$ 46.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetyltransferaseAffectAntibioticsArsenicArsenicalsArsenitesBiochemicalBiochemistryBiologyBiosensing TechniquesBiosensorCancer EtiologyCardiovascular systemCategoriesChildhoodCrystallographyDevelopmental Delay DisordersDiabetes MellitusEnvironmental CarcinogensEnzymesFlowersFundingGenesGoalsGrantHealthHeart DiseasesHerbicidesHumanHuman MicrobiomeLyaseMalignant NeoplasmsMalignant neoplasm of urinary bladderMetabolic BiotransformationMethylationMethyltransferaseMolecularMolecular GeneticsNational Institute of General Medical SciencesNatural ProductsOxidasesPathway interactionsPeripheral Vascular DiseasesPhysiologicalProteinsQualifyingRecording of previous eventsRegulationResearchResistanceRoleSkin CancerStructureToxic Environmental SubstancesToxic effectToxinUnited StatesVisionantimicrobial drugenzyme structurefallshealth applicationmicrobial genomenervous system disordernovelpermeasepollutantprogramsresistance gene
项目摘要
Project Summary/Abstract: Arsenic is the most pervasive toxin, considered by the EPA to be one the
most significant potential environmental threats to human health. Arsenic exposure is a cause of cancer, heart
disease, childhood developmental delay, and disrupts the human microbiome. Our research program
blossomed during the current funding period of our NIGMS grant, focusing on arsenic transporters
and biotransformations, which modify its availability, speciation, mobility and toxicity. We are uniquely
qualified for this project: over the lifetime of this grant, my group identified and characterized the majority of
ars genes/proteins involved in arsenic transport, biotransformations and resistance and their impact on the
global arsenic biogeocycle. We discovered enzymes of the arsenic methylation cycle and elucidated
mechanisms and structures of the enzymes of biotransformation, developed biosensors for
organoarsenicals herbicides and discovered organoarsenicals with the potential to be novel antimicrobial
agents. My goals for the next five years fall into four categories. 1) Structure/function analysis of enzymes
of arsenic biotransformations. We will elucidate the catalytic cycle of the ArsM arsenite S-
adenosylmethione (SAM) methyltransferase, the ArsH methylarsenite oxidases, the ArsI C-As bond lyases
and the ArsN N-acetyltransferase through biochemical and structural analysis. 2) Regulation and biosensing.
We will determine the structural details of metalloregulation. We will devise new applications for sensing
environmental organoarsenical pollutants. 3) Arsenic transporters; we identified a number of new permeases
for organoarsenicals and will determine the mechanism of transport by a combination of molecular genetics,
biochemistry and crystallography. 4) Arsenical antibiotics; we recently identified two organoarsenical natural
products with antibiotic activity. We will determine the pathways of synthesis and mode of action of
these novel compounds and discover new natural products with potential health applications. My overall
vision is a research program of sufficient breadth to encompass identification of the physiological roles of
known arsenic resistance genes and sufficient depth to elucidate their molecular mechanisms. Microbial
genomes have many uncharacterized arsenic-related genes. There are predicted permeases and enzymes
with no known substrate or function. We predict these are involved in arsenical transport or biotransformations.
We will mine microbial genomes for new ars genes, deduce their evolutionary histories and determine how they
affect cycling of environmental arsenicals. We will discover their physiological functions. Their protein
products will be purified and characterized by biochemical and structural analyses. My overarching theme is
to make substantial contributions to understanding of the global arsenic biogeocycle and its impact on
human health.
项目摘要/摘要:砷是最普遍的毒素,EPA认为是一个
最重要的对人类健康的潜在环境威胁。砷暴露是癌症的原因
疾病,儿童发育延迟,并破坏人类微生物组。我们的研究计划
在我们的纽约赠款的当前资金期间开花,重点关注砷运输商
和生物转化,可以改变其可用性,物种形成,流动性和毒性。我们是独特的
有资格参加该项目:在这笔赠款的一生中,我的小组确定并表征了大多数
ARS基因/蛋白质参与砷运输,生物转化和抗性及其对它们的影响
全球砷生物地球细胞。我们发现了砷甲基化循环的酶并阐明了
生物转化酶的机制和结构,开发了生物传感器
有机苯苯甲酸除草剂并发现了有机苯苯甲状腺素,有可能成为新颖的抗菌素
代理商。我未来五年的目标分为四类。 1)酶的结构/功能分析
砷生物转化。我们将阐明ARSM砷S-的催化循环
腺苷甲硫代(SAM)甲基转移酶,Arsh甲基氧化酶,ARSI C-AS键裂解酶
以及通过生化和结构分析的ARSN N-乙酰转移酶。 2)调节和生物传感。
我们将确定冶金调节的结构细节。我们将设计新的传感应用程序
环境有机苯乙污染物。 3)砷转运蛋白;我们确定了许多新的腐蚀
对于有机苯乙烯,将通过分子遗传学组合确定转运机理,
生物化学和晶体学。 4)砷抗生素;我们最近确定了两个有机苯苯甲型的自然
具有抗生素活性的产品。我们将确定合成的途径和
这些新颖的化合物并发现具有潜在健康应用的新天然产品。我的整体
Vision是一项具有足够广度的研究计划,以涵盖对生理作用的识别
已知的砷耐药基因和足够的深度以阐明其分子机制。微生物
基因组具有许多非特征的砷相关基因。有预测的腐蚀和酶
没有已知的底物或功能。我们预测这些涉及砷运输或生物转化。
我们将为新ARS基因挖掘微生物基因组,推断出其进化史并确定它们如何
影响环境砷的循环。我们将发现他们的生理功能。他们的蛋白质
产品将通过生化和结构分析纯化和特征。我的总体主题是
为理解全球砷生物地球细胞及其对全球砷的影响做出重大贡献
人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY P. ROSEN其他文献
BARRY P. ROSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY P. ROSEN', 18)}}的其他基金
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
9923901 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
10374036 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS(III)-RESPONSIVE TRANSCRIPTIONAL
AS(III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
8170040 - 财政年份:2010
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS(III)-RESPONSIVE TRANSCRIPTIONAL
AS(III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7954364 - 财政年份:2009
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS (III)-RESPONSIVE TRANSCRIPTIONA
AS (III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7722025 - 财政年份:2008
- 资助金额:
$ 46.32万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS (III)-RESPONSIVE TRANSCRIPTIONA
AS (III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7598285 - 财政年份:2007
- 资助金额:
$ 46.32万 - 项目类别:
THE ATP-COUPLED ARSENICAL PUMP OF ESCHERICHIA COLI
大肠杆菌的 ATP 耦合砷泵
- 批准号:
6395920 - 财政年份:2000
- 资助金额:
$ 46.32万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苏打盐碱湿地干湿交替对抗生素迁移转化的影响机制
- 批准号:42301134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三峡库区沉积物中微塑料和抗生素复合污染对N2O排放过程的影响机制
- 批准号:52300244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境兽用抗生素暴露对儿童心血管危险因素聚集影响及SCAP-SREBP脂代谢通路基因甲基化调控机制研究
- 批准号:82373593
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining the role of short-chain fatty acids in adolescent opioid reinforcement and epigenetic regulation
定义短链脂肪酸在青少年阿片类药物强化和表观遗传调控中的作用
- 批准号:
10576350 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
Defining the role of short-chain fatty acids in adolescent opioid reinforcement and epigenetic regulation
定义短链脂肪酸在青少年阿片类药物强化和表观遗传调控中的作用
- 批准号:
10643363 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
Defining the role of short-chain fatty acids in adolescent opioid reinforcement and epigenetic regulation
定义短链脂肪酸在青少年阿片类药物强化和表观遗传调控中的作用
- 批准号:
10369599 - 财政年份:2021
- 资助金额:
$ 46.32万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
9923901 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
10374036 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别: