Impact of dilated cardiomyopathy mutations on cardiac myosin structure and function
扩张型心肌病突变对心肌肌球蛋白结构和功能的影响
基本信息
- 批准号:10595237
- 负责人:
- 金额:$ 75.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseActinsAdoptedBindingBiochemicalBiomedical EngineeringBiophysicsBiosensorCalciumCardiacCardiac MyocytesCardiac MyosinsClosure by clampComputer ModelsContractsDNADataDefectDilated CardiomyopathyDiseaseElectron MicroscopyEnzymatic BiochemistryEquilibriumFilamentFluorescence Resonance Energy TransferFluorescence SpectroscopyFoundationsGenerationsGenesGeneticGoalsHeadHeartHeart failureHumanImpairmentIndividualInheritedKineticsLasersLeftLinkMeasurementMeasuresMechanicsMicrofilamentsModelingMolecularMolecular ConformationMolecular MotorsMolecular StructureMonitorMotorMuscleMuscle CellsMuscle ContractionMuscle FibersMutateMutationMyocardiumMyosin ATPaseNanotubesNonmuscle Myosin Type IIAPathogenesisPoint MutationPower strokePropertyRegulationRelaxationReportingSarcomeresSlideStriated MusclesStructureSystemSystoleSystolic PressureTailTestingTherapeuticThick FilamentThin FilamentVentriculararmbeta-Myosinblood pumpdesignhuman diseasein silicomechanical propertiesmolecular mechanicsmotor impairmentmuscle physiologymutantnoveloptic trapoptical trapspreventrecruitsensorsingle moleculestructural biologytherapy development
项目摘要
Project Summary/Abstract
Dilated cardiomyopathy (DCM) is the second most common cause of heart failure world-wide, and inherited
forms of DCM make up 30% of non-ischemic cases. MYH7, which encodes beta-cardiac myosin (M2β), is one
of the more commonly mutated genes and is the molecular motor that powers contraction in ventricular
cardiomyocytes. This proposal is focused on examining the structural and functional impact of DCM mutations
in human M2β, with an overall goal of determining molecular mechanisms of contractile defects and developing
a foundation for therapeutic strategies. The force, velocity, and power generating capacity of muscle is related
to the ability to recruit myosin molecules in the thick filament to interact with actin in the thin filament of the
muscle sarcomere. The recruited myosin molecules generate force by utilizing a conserved ATPase cycle in
which myosin generates a power stroke while interacting with actin. Cardiac myosin can exist in the auto-inhibited
state with slow ATP turnover (super relaxed state, SRX) in which head-head and head-tail interactions prevent
it from interacting with actin (interacting heads motif, IHM) or the uninhibited state (disordered relaxed state,
DRX) that is readily available to produce force. The recruited myosin also impacts the calcium sensitivity of the
myofilaments because myosin binding cooperatively activates the actin thin filament. We will test the central
hypothesis that DCM mutations impair systolic contraction in the heart by altering the intrinsic force producing
ability of individual cardiac myosin molecules, stabilizing the SRX/IHM state, and/or altering cooperative
activation of the actin thin filament. In the first Aim we will examine the impact of the DCM mutations on the
myosin ATPase cycle, duty ratio, and formation of the SRX state. The structural impact of the mutations will be
examined by using a FRET biosensor that monitors the myosin power stroke and another FRET sensor that
examines IHM state formation. Electron microscopy will also be used to evaluate the formation of the IHM state
which will be directly compared to the fluorescence spectroscopy and biochemical analysis. Aim 2 will examine
the impact of DCM mutations on the single molecule mechanical properties of human M2β, including step size
and load-dependent detachment, using a load clamped optical trap. In Aim 3 we will utilize a computational
model of muscle contraction to predict how the parameters measured in Aims 1&2 will impact ensemble force,
velocity, and power. We will then directly examine the impact of the mutations on the force generating properties
by incorporating the human M2β constructs into DNA-based “designer” thick filaments, and examining their ability
to interact with regulated thin filaments in a calcium dependent manner. The force, velocity, and power
measurements will be performed in the “designer” thick filaments, which contain native thick filament-like
geometric spacing of myosin molecules. Overall, the completion of the specific aims of this proposal will enhance
our understanding of the molecular mechanisms of disease pathogenesis in DCM and provide a foundation for
developing therapies for treating DCM.
项目摘要/摘要
扩张的心肌病(DCM)是全球心力衰竭的第二大最常见原因,并继承了
DCM的形式占非缺血病例的30%。编码β-心肌球蛋白(M2β)的MyH7是一个
更常见的突变基因,是分子运动,它可以在心室中供电
心肌细胞。该提案的重点是检查DCM突变的结构和功能影响
在人类M2β中,总体目标是确定收缩缺陷的分子机制并发展
理论策略的基础。肌肉的力,速度和发电能力是相关的
具有在厚细丝中募集肌球蛋白分子与肌动蛋白相互作用的能力
肌肉肌膜。招募的肌球蛋白分子通过使用构成的ATPase循环产生力
肌球蛋白在与肌动蛋白互动时会产生动力中风。心脏肌球蛋白可以在自动抑制中存在
具有缓慢的ATP营业额(超放松状态,SRX)的状态,其中头部和头尾相互作用可防止
它来自与肌动蛋白(相互作用的基序,IHM)或未抑制状态(无序的松弛状态,
DRX)很容易产生力。招募的肌球蛋白还影响
肌膜丝是因为肌球蛋白结合会协同激活肌动蛋白细丝。我们将测试中央
假设DCM突变通过改变内在力的产生来损害心脏的收缩收缩
单个心脏肌球蛋白分子的能力,稳定SRX/IHM状态和/或改变合作
肌动蛋白细丝的激活。在第一个目的中,我们将研究DCM突变对
肌球蛋白ATPase周期,占空比和SRX状态的形成。突变的结构影响将是
通过使用fret生物传感器来检查肌球蛋白动力中风和另一个fret传感器
检查IHM状态形成。电子显微镜也将用于评估IHM状态的形成
AIM 2将检查哪些将直接与荧光光谱和生化分析进行比较。
DCM突变对人M2β的单分子机械性能的影响,包括步长
使用负载夹紧的光学陷阱和载荷依赖性脱离。在AIM 3中,我们将使用计算
肌肉合同的模型,以预测目标1和2中测量的参数将如何影响合奏力,
速度和力量。然后,我们将直接检查突变对产生力特性的影响
通过将人类M2β构建体纳入基于DNA的“设计师”厚细丝中,并检查其能力
以钙依赖的方式与受调节的细丝型相互作用。力量,速度和力量
测量将在“设计师”厚的细丝中进行,其中包含像天然厚细丝一样
肌球蛋白分子的几何间距。总体而言,该提案的具体目的的完成将增强
我们对DCM中疾病发病机理的分子机制的理解,为
开发用于治疗DCM的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sivaraj Sivaramakrishnan其他文献
Sivaraj Sivaramakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sivaraj Sivaramakrishnan', 18)}}的其他基金
Research Supplement to Promote Diversity in Health-Related Research
促进健康相关研究多样性的研究补充
- 批准号:
10615955 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10425753 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10427318 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
9907191 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10171616 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Research supplement to promote diversity in Heath-related research
研究补充以促进健康相关研究的多样性
- 批准号:
10221154 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10624275 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Cardiac Myosin-Binding Protein C: Molecular Mechanisms Governing Cardiac Contractility
心肌肌球蛋白结合蛋白 C:控制心脏收缩力的分子机制
- 批准号:
10618511 - 财政年份:2020
- 资助金额:
$ 75.05万 - 项目类别:
Emergent cellular functions of GPCRs and myosins
GPCR 和肌球蛋白的新兴细胞功能
- 批准号:
9919584 - 财政年份:2018
- 资助金额:
$ 75.05万 - 项目类别:
Emergent cellular functions of GPCRs and myosins
GPCR 和肌球蛋白的新兴细胞功能
- 批准号:
10550541 - 财政年份:2018
- 资助金额:
$ 75.05万 - 项目类别:
相似海外基金
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10507610 - 财政年份:2022
- 资助金额:
$ 75.05万 - 项目类别:
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10680611 - 财政年份:2022
- 资助金额:
$ 75.05万 - 项目类别:
Elucidating the Functional Role of Post-translational Aminoacylation in Chromatin Regulation
阐明翻译后氨酰化在染色质调节中的功能作用
- 批准号:
10489710 - 财政年份:2022
- 资助金额:
$ 75.05万 - 项目类别:
Drug Discovery for First-In-Class Myosin 10 Inhibitors as a Novel Target for Glioblastoma
首创肌球蛋白 10 抑制剂作为胶质母细胞瘤新靶标的药物发现
- 批准号:
10355649 - 财政年份:2021
- 资助金额:
$ 75.05万 - 项目类别:
Drug Discovery for First-In-Class Myosin 10 Inhibitors as a Novel Target for Glioblastoma
首创肌球蛋白 10 抑制剂作为胶质母细胞瘤新靶标的药物发现
- 批准号:
10595848 - 财政年份:2021
- 资助金额:
$ 75.05万 - 项目类别: