Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
基本信息
- 批准号:10680611
- 负责人:
- 金额:$ 11.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseATPase DomainAccelerationAchievementActinsAutomobile DrivingAwardBenchmarkingBindingBinding SitesBiochemical ReactionBiologicalBiological ModelsCaringCharacteristicsChemistryClassical MechanicsCollaborationsCollectionComplexCrystallographyDevelopmentDiseaseElectron MicroscopyEngineeringEnsureEnzymatic BiochemistryEnzymesEventExhibitsFree EnergyFreezingGeometryHandHeat shock proteinsHybridsHydrolysisImpairmentIn VitroIndividualIonsJointsKnowledgeLengthLifeLigand BindingMalignant NeoplasmsMentorsMentorshipMetabolismMethodsModelingModernizationNucleotidesOrganismPathway interactionsPersonsPhasePhysiologicalPreparationProcessProtonsQuantum MechanicsReactionReactive Oxygen SpeciesResearchRoentgen RaysSeriesSideSolidStructureSumSystemTemperatureTestingTimeTime StudyTransportationUniversitiesWaterWorkactivation-induced cytidine deaminasechemical reactionelectron diffractionenzyme activityenzyme substrateexperimental studyin vivoinnovationinsightinstrumentmolecular mechanicsmutantnoveloperationprogramsreceptorrestraintskillstime intervaltool
项目摘要
Project Summary
Enzymes are proteins that aid in the acceleration of metabolism or the chemical reactions in all living organisms.
By synthesizing certain molecules and degrading others, enzymes can catalyze a range of biochemical reactions
both in vivo and in vitro. When in collaboration with transporters and receptors, enzymes regulate almost all
physiological functions in the body. Therefore, it is important to thoroughly understand ex- and in vivo enzyme
activities.
Among the many methods of studying enzyme activities, time-resolved macromolecular crystallography (TRX)
has the advantage of investigating enzymatic reaction details on the fly. However, TRX theoretically can only
capture the states where the enzymes are at local energetic saddle points. On the other hand, modern hybrid
quantum mechanics/molecular mechanics (QM/MM) enables studying enzymatic reactions where new
molecules are formed or destroyed. However, without the support from solid biological structures or if the
transformation between reactant and product states is distinctively different, QM/MM cannot reach the authentic
answer.
This proposal aims to establish a new TRX- and QM/MM-based strategy to investigate enzymatic activities by
joining the strength of those two territories. Notably, a recently elucidated allosteric controlling mechanism in 70-
kDa heat shock proteins (Hsp70s) leads to an unparalleled opportunity of building a model system as a
benchmark for developing the proposed TRX-QM/MM strategy. Specifically, in Aim 1, a groundbreaking
discovery of oxygen radicals driving ATP hydrolysis will be examined by TRX experiments on the ATPase domain
of bacterial Hsp70 DnaK. In Aim 2, I will use QM/MM to identify and verify the oxygen radical species, and
depict the free energy landscape of the hydrolysis event in full scale. In Aim 3, I will use DnaK and actin to
benchmark the development of three components that will significantly enhance the scope of the TRX-QM/MM
method, including an automated freezing-and-quenching instrument, a new electron diffraction method for
chasing proton transportation, and a new crystallographic refinement program that can handle open-shell
systems.
During the K99 phase (Aim 1 and 2), I will be mentored by Dr. Wayne Hendrickson, a leader in macromolecular
crystallography, and Dr. Arieh Warshel, a leader in computational enzymology. This work will reveal a novel
mechanism of ATP hydrolysis by Hsp70 in the short term. Still, most importantly, it will establish an unparalleled
TRX-QM/MM method for broad enzymatic studies in the longer term.
项目摘要
酶是蛋白质,可帮助所有生物体中的代谢加速或化学反应的加速。
通过合成某些分子并降解其他分子,酶可以催化一系列的生化反应
体内和体外。与转运蛋白和受体合作时,酶几乎调节
体内的生理功能。因此,重要的是要彻底了解外体和体内酶
活动。
在研究酶活性的众多方法中,时间分辨的大分子晶体学(TRX)
具有研究酶促反应细节的优势。但是,TRX理论上只能
捕获酶处于局部能量鞍点处的状态。另一方面,现代混合动力车
量子力学/分子力学(QM/mm)可以研究新的酶促反应
分子形成或破坏。但是,没有固体生物结构的支持或
反应物和产品状态之间的转换截然不同,QM/mm无法达到真实
回答。
该建议旨在建立一种新的TRX和QM/MM策略,以通过
加入这两个领土的力量。值得注意的是,最近阐明了70-中的变构控制机制
KDA热休克蛋白(HSP70S)导致无与伦比的机会将模型系统构建为
制定拟议的TRX-QM/MM策略的基准。具体来说,在AIM 1中,是开创性的
驱动ATP水解的氧自由基的发现将通过ATPase结构域的TRX实验检查
细菌HSP70 DNAK。在AIM 2中,我将使用QM/mm来识别和验证氧自由基物种,以及
全面描绘了水解事件的自由能景观。在AIM 3中,我将使用DNAK和ATCIN进行
基准制定三个组件的开发将显着提高TRX-QM/mm的范围
方法,包括一种自动冻结和淬火仪器,一种新的电子衍射方法
追逐质子运输和一个新的晶体学改进程序,可以处理开放式壳
系统。
在K99阶段(AIM 1和2),我将由大分子的领导者Wayne Hendrickson博士指导
晶体学和计算酶学领导者Arieh Warshel博士。这项工作将揭示一本小说
HSP70在短期内通过ATP水解的机理。不过,最重要的是,它将建立无与伦比的
从长远来看,用于广泛酶促研究的TRX-QM/MM方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Wang其他文献
The zinc finger protein Zfr1p is localized specifically to conjugation junction and required for sexual development in Tetrahymena trermophila.
锌指蛋白 Zfr1p 特异性定位于接合点,是嗜震四膜虫性发育所必需的。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.7
- 作者:
Jing Xu;Huaru Tian;AIhua Liang;Wei Wang - 通讯作者:
Wei Wang
Well-posendess of Hydrodynamics on the moving surface
运动表面流体动力学的充分把握
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.5
- 作者:
Wei Wang;Pingwen Zhang;Zhifei Zhang - 通讯作者:
Zhifei Zhang
Wei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Wang', 18)}}的其他基金
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10507610 - 财政年份:2022
- 资助金额:
$ 11.46万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10132232 - 财政年份:2020
- 资助金额:
$ 11.46万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10372075 - 财政年份:2020
- 资助金额:
$ 11.46万 - 项目类别:
Designing neutralization antibodies against Sars-Cov-2
设计针对 Sars-Cov-2 的中和抗体
- 批准号:
10173204 - 财政年份:2020
- 资助金额:
$ 11.46万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
10583462 - 财政年份:2020
- 资助金额:
$ 11.46万 - 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
- 批准号:
9917215 - 财政年份:2020
- 资助金额:
$ 11.46万 - 项目类别:
Integrated analysis of genetic variation and epigenomic data
遗传变异和表观基因组数据的综合分析
- 批准号:
9898420 - 财政年份:2017
- 资助金额:
$ 11.46万 - 项目类别:
Integrated analysis of genetic variation and epigenomic data
遗传变异和表观基因组数据的综合分析
- 批准号:
9333639 - 财政年份:2017
- 资助金额:
$ 11.46万 - 项目类别:
相似海外基金
Loss of VCP Function in Frontotemporal Lobar Degeneration
额颞叶变性导致 VCP 功能丧失
- 批准号:
10440933 - 财政年份:2022
- 资助金额:
$ 11.46万 - 项目类别:
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10507610 - 财政年份:2022
- 资助金额:
$ 11.46万 - 项目类别:
Defining the mechanisms of kinetoplast DNA assembly by trypanosomal topoisomerase II for therapeutic target development
定义锥虫拓扑异构酶 II 的动质体 DNA 组装机制,用于治疗靶点开发
- 批准号:
10386849 - 财政年份:2021
- 资助金额:
$ 11.46万 - 项目类别:
Elucidating the Molecular Mechanism of TRIP13-mediated Radiation Resistance in Oral Squamous Cell Carcinoma
阐明 TRIP13 介导的口腔鳞状细胞癌放射抗性的分子机制
- 批准号:
10480747 - 财政年份:2021
- 资助金额:
$ 11.46万 - 项目类别:
Elucidating the Molecular Mechanism of TRIP13-mediated Radiation Resistance in Oral Squamous Cell Carcinoma
阐明 TRIP13 介导的口腔鳞状细胞癌放射抗性的分子机制
- 批准号:
10649402 - 财政年份:2021
- 资助金额:
$ 11.46万 - 项目类别: