Cardiovascular disease, metabolic syndrome, microbes and metabolites in FHS
FHS 中的心血管疾病、代谢综合征、微生物和代谢物
基本信息
- 批准号:10556439
- 负责人:
- 金额:$ 95.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Adrenal Cortex HormonesAffectAtherosclerosisBacteriaBiochemistryBioinformaticsBiological AssayBiological AvailabilityBiologyCardiometabolic DiseaseCardiovascular DiseasesCardiovascular systemCellsCholesterolCholesterol HomeostasisCirculationClinicalClinical DataCohort StudiesCoupledCouplingDataData SetDiseaseEngineeringEnzymesEpithelial CellsFecesFramingham Heart StudyGenerationsGenesGenetic TranscriptionGnotobioticGoalsHealthHumanImmuneIn VitroInflammationIntestinesInvestigationLibrariesLinkLipidsLiverMeasuresMedicalMetabolicMetabolic DiseasesMetabolic syndromeMetabolismMetagenomicsMicrobeMicrobiologyMusNon-Insulin-Dependent Diabetes MellitusObesityPaperParticipantPathway interactionsPersonsPhenotypePhytosterolsPlantsProcessProductionProteinsProteomicsPublishingRisk FactorsSamplingSerumSteroidsSterolsStructureSubstrate SpecificitySystemWorkabsorptioncardiometabolic riskcardiovascular disorder riskcardiovascular healthcholesterol dehydrogenasecholesterol transporterscohortcommensal microbescytokinedisorder riskenzyme activitygut bacteriagut microbesgut microbiomegut microbiotahost-microbe interactionshuman diseaseintestinal epitheliummembermetabolomicsmetagenomic sequencingmicrobialmicrobial communitymicrobiomenovelreconstitutiontranscriptomics
项目摘要
Cardiometabolic diseases affect millions of people worldwide and have numerous underlying risk factors. Commensal microbes that comprise the intestinal microbiome are implicated in the progression and onset of many of these diseases, including type 2 diabetes, obesity, and atherosclerosis. Gut microbes have extensive metabolic capabilities, allowing them to produce or modify molecules that influence disease risk. Members of the gut microbiota have been known to convert cholesterol into the poorly absorbable metabolite coprostanol for almost 100 years, however the microbial genes responsible for this metabolism were not known. In recent work, we analyzed paired gut metagenomic and metabolomic data to identify a novel group of cholesterol dehydrogenases that metabolize cholesterol when expressed in vitro. Using clinical and metagenomic data from the Framingham Heart Study (FHS), we observed lower serum cholesterol in subjects whose microbiomes encode these cholesterol dehydrogenases. The cholesterol dehydrogenases we originally described convert cholesterol to cholestenone and coprostanone to coprostanol, and we have since identified the intermediate enzyme that converts cholestenone to coprostanone. In this proposal, we will functionally characterize metabolism of sterols in the gut and determine the impact of this process on cardiometabolic disease. In Aim 1, we will identify determinants of host-microbe interactions by collecting and analyzing clinical variables with stool and serum samples from the Gen3/Omni2 FHS cohorts. We will generate coupled stool and serum metabolomics and metagenomics datasets, perform culturomics to assemble a microbial strain library, and identify host exposomes from clinical data. We will then utilize these data to identify and prioritize microbially- derived or modified circulating metabolites associated with CVD for further mechanistic investigations. In Aim 2, We will couple bioinformatics with microbiology and biochemistry for targeted identification of enzymes/proteins that alter sterol structures. This effort will allow us to probe the diversity of gut microbial sterol metabolizing enzymes and their substrates in order to determine specific microbes and genes with the capacity to modify cholesterol. Taking a systems-level approach, we will colonize mice with cholesterol-metabolizing microbial communities to determine how microbial metabolism modulates serum cholesterol and pathways central to cardiovascular disease. In Aim 3, we will functionally link microbiome enzyme activity to sterol metabolism and metabolic disease. We will employ cell-based transcriptional and proteomic assays to interrogate the effects of microbially-modified sterols on local sterol sensing pathways in epithelial cells and measure the effects of circulating sterol metabolites on human immune cells.
心脏代谢疾病影响着全世界数百万人,并有许多潜在的危险因素。组成肠道微生物组的共生微生物与许多此类疾病的进展和发病有关,包括 2 型糖尿病、肥胖症和动脉粥样硬化。肠道微生物具有广泛的代谢能力,使它们能够产生或修改影响疾病风险的分子。近 100 年来,人们都知道肠道微生物群的成员可以将胆固醇转化为难以吸收的代谢物粪甾烷醇,但负责这种代谢的微生物基因尚不清楚。在最近的工作中,我们分析了配对的肠道宏基因组和代谢组数据,以确定一组在体外表达时代谢胆固醇的新型胆固醇脱氢酶。利用弗雷明汉心脏研究 (FHS) 的临床和宏基因组数据,我们观察到微生物组编码这些胆固醇脱氢酶的受试者的血清胆固醇较低。我们最初描述的胆固醇脱氢酶将胆固醇转化为胆烯酮,将粪前列酮转化为粪甾烷醇,此后我们鉴定了将胆固醇转化为粪前列酮的中间酶。在这项提案中,我们将从功能上表征肠道中甾醇的代谢,并确定该过程对心脏代谢疾病的影响。在目标 1 中,我们将通过收集和分析来自 Gen3/Omni2 FHS 队列的粪便和血清样本的临床变量来确定宿主-微生物相互作用的决定因素。我们将生成耦合的粪便和血清代谢组学和宏基因组学数据集,进行培养组学以组装微生物菌株库,并从临床数据中识别宿主暴露体。然后,我们将利用这些数据来识别和优先考虑与 CVD 相关的微生物衍生或修饰的循环代谢物,以进行进一步的机制研究。在目标 2 中,我们将生物信息学与微生物学和生物化学结合起来,有针对性地鉴定改变甾醇结构的酶/蛋白质。这项工作将使我们能够探索肠道微生物甾醇代谢酶及其底物的多样性,以确定具有修饰胆固醇能力的特定微生物和基因。采用系统级方法,我们将用胆固醇代谢微生物群落移植到小鼠身上,以确定微生物代谢如何调节血清胆固醇以及心血管疾病的核心途径。在目标 3 中,我们将在功能上将微生物酶活性与甾醇代谢和代谢疾病联系起来。我们将采用基于细胞的转录和蛋白质组学检测来探究微生物修饰的甾醇对上皮细胞局部甾醇传感途径的影响,并测量循环甾醇代谢物对人类免疫细胞的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramnik J Xavier其他文献
MIT Open Access Articles Gene networks that compensate for crosstalk with crosstalk
麻省理工学院开放获取文章用串扰补偿串扰的基因网络
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Springer Science;Business Media;Isaak E. Müller;Jacob R. Rubens;Tomi Jun;Daniel Graham;Ramnik J Xavier;Timothy K. Lu - 通讯作者:
Timothy K. Lu
Ramnik J Xavier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramnik J Xavier', 18)}}的其他基金
Cardiovascular disease, metabolic syndrome, microbes and metabolites in FHS
FHS 中的心血管疾病、代谢综合征、微生物和代谢物
- 批准号:
10367105 - 财政年份:2022
- 资助金额:
$ 95.59万 - 项目类别:
Core 2: Immune Bioinformatics and Computational Biology Core
核心2:免疫生物信息学和计算生物学核心
- 批准号:
10251175 - 财政年份:2019
- 资助金额:
$ 95.59万 - 项目类别:
Core 2: Immune Bioinformatics and Computational Biology Core
核心2:免疫生物信息学和计算生物学核心
- 批准号:
10020930 - 财政年份:2019
- 资助金额:
$ 95.59万 - 项目类别:
RP2: Targeting genes and pathways for autophagy-dependent inhibition of bacterial infection
RP2:自噬依赖性抑制细菌感染的靶向基因和途径
- 批准号:
10364724 - 财政年份:2019
- 资助金额:
$ 95.59万 - 项目类别:
RP2: Targeting genes and pathways for autophagy-dependent inhibition of bacterial infection
RP2:自噬依赖性抑制细菌感染的靶向基因和途径
- 批准号:
10573259 - 财政年份:2019
- 资助金额:
$ 95.59万 - 项目类别:
Functional characterization of CARD9 genetic variants in fungal immunity
CARD9 遗传变异在真菌免疫中的功能表征
- 批准号:
10331807 - 财政年份:2018
- 资助金额:
$ 95.59万 - 项目类别:
Center for the Study of Inflammatory Bowel Disease at Massachusetts General Hospital
马萨诸塞州总医院炎症性肠病研究中心
- 批准号:
9262326 - 财政年份:2016
- 资助金额:
$ 95.59万 - 项目类别:
相似国自然基金
ABHD17a调控PPARγ棕榈酰化修饰影响泡沫细胞形成和动脉粥样硬化发展的机制研究
- 批准号:82301972
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
主动脉粥样硬化钙化和MAPK/WNT/β-catenin-RUNX2信号轴介导主动脉壁细胞表型重塑影响血管稳态参与调控腹主动脉瘤的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
动脉粥样硬化来源外泌体对脑微血管内皮细胞功能的影响及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动脉粥样硬化发展进程中,巨噬/泡沫细胞力学特性的改变及其对细胞迁移行为的影响与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
应用OCT研究LncRNA-AAR调控巨噬细胞功能影响动脉粥样硬化的作用及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Cardiovascular disease, metabolic syndrome, microbes and metabolites in FHS
FHS 中的心血管疾病、代谢综合征、微生物和代谢物
- 批准号:
10367105 - 财政年份:2022
- 资助金额:
$ 95.59万 - 项目类别:
FcRIIA, Platelet Activity, and Vasculopathy in Systemic Lupus Erythematosus
系统性红斑狼疮中的 FcRIIA、血小板活性和血管病变
- 批准号:
9234729 - 财政年份:2017
- 资助金额:
$ 95.59万 - 项目类别:
Class IIa HDAC and MEF2 Targeting to Promote Foxp3+ Treg Cell Functions
IIa 类 HDAC 和 MEF2 靶向促进 Foxp3 Treg 细胞功能
- 批准号:
9079672 - 财政年份:2016
- 资助金额:
$ 95.59万 - 项目类别:
Inflammation and Insulin Resistance in Rheumatoid Arthritis
类风湿关节炎的炎症和胰岛素抵抗
- 批准号:
8381910 - 财政年份:2012
- 资助金额:
$ 95.59万 - 项目类别: